論文の概要: Zero-Sum Positional Differential Games as a Framework for Robust Reinforcement Learning: Deep Q-Learning Approach
- arxiv url: http://arxiv.org/abs/2405.02044v1
- Date: Fri, 3 May 2024 12:21:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-06 12:55:53.325373
- Title: Zero-Sum Positional Differential Games as a Framework for Robust Reinforcement Learning: Deep Q-Learning Approach
- Title(参考訳): ロバスト強化学習のためのフレームワークとしてのゼロサム位置微分ゲーム:ディープQラーニングアプローチ
- Authors: Anton Plaksin, Vitaly Kalev,
- Abstract要約: 本稿では、位置微分ゲーム理論におけるRRL問題を考慮した最初の提案である。
すなわち、イザックの条件の下では、同じQ-函数をミニマックス方程式とマクシミン・ベルマン方程式の近似解として利用することができる。
本稿ではIssas Deep Q-Networkアルゴリズムについて,他のベースラインRRLやMulti-Agent RLアルゴリズムと比較して,その優位性を示す。
- 参考スコア(独自算出の注目度): 2.3020018305241337
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Robust Reinforcement Learning (RRL) is a promising Reinforcement Learning (RL) paradigm aimed at training robust to uncertainty or disturbances models, making them more efficient for real-world applications. Following this paradigm, uncertainty or disturbances are interpreted as actions of a second adversarial agent, and thus, the problem is reduced to seeking the agents' policies robust to any opponent's actions. This paper is the first to propose considering the RRL problems within the positional differential game theory, which helps us to obtain theoretically justified intuition to develop a centralized Q-learning approach. Namely, we prove that under Isaacs's condition (sufficiently general for real-world dynamical systems), the same Q-function can be utilized as an approximate solution of both minimax and maximin Bellman equations. Based on these results, we present the Isaacs Deep Q-Network algorithms and demonstrate their superiority compared to other baseline RRL and Multi-Agent RL algorithms in various environments.
- Abstract(参考訳): Robust Reinforcement Learning(RRL)は、不確実性や障害モデルに対する堅牢なトレーニングを目的とした、有望な強化学習(RL)パラダイムである。
このパラダイムに従うと、不確実性や乱れは第2の敵エージェントの行動と解釈され、その問題は、相手の行動に対して堅牢なエージェントのポリシーを求めることに還元される。
本稿では, 位置微分ゲーム理論におけるRRL問題を考察し, 理論的に正当化された直観を得ることにより, 集中型Q-ラーニング手法の開発を支援する。
すなわち、アイザックの条件(実世界の力学系では十分一般的な)の下で、同じQ-函数がミニマックス方程式とマクシミン・ベルマン方程式の両方の近似解として利用できることを証明する。
これらの結果に基づき、Isaris Deep Q-Networkアルゴリズムを示し、様々な環境における他のベースラインRRLやマルチエージェントRLアルゴリズムと比較して、それらの優位性を実証する。
関連論文リスト
- Principled Penalty-based Methods for Bilevel Reinforcement Learning and RLHF [82.73541793388]
本稿では, ペナルティ定式化のレンズによる二レベルRL問題の解法として, 第一原理のアルゴリズムフレームワークを提案する。
本稿では,問題景観とそのペナルティに基づく勾配(政治)アルゴリズムについて理論的研究を行う。
シミュレーションによるアルゴリズムの有効性を,Stackelberg Markovゲーム,人間からのフィードバックとインセンティブ設計によるRLで実証する。
論文 参考訳(メタデータ) (2024-02-10T04:54:15Z) - On Practical Robust Reinforcement Learning: Practical Uncertainty Set
and Double-Agent Algorithm [11.748284119769039]
ロバスト強化学習(RRL)は、マルコフ決定プロセス(MDP)の不確実性に対して最悪のケースパフォーマンスを最適化するための堅牢なポリシーを求めることを目的としている。
論文 参考訳(メタデータ) (2023-05-11T08:52:09Z) - Single-Trajectory Distributionally Robust Reinforcement Learning [13.013268095049236]
強化学習(Reinforcement Learning, RL)は、人工知能(Artificial General Intelligence, AGI)に繋がる重要な要素と考えられている。
しかしながら、RLはテスト環境と同じトレーニング環境を持つことでしばしば批判され、実世界でのRLの適用を妨げている。
この問題を解決するために、未知のテスト環境を含む可能性のある環境の組における最悪の性能を改善するために、分散ロバストRL(DRRL)を提案する。
論文 参考訳(メタデータ) (2023-01-27T14:08:09Z) - Contrastive UCB: Provably Efficient Contrastive Self-Supervised Learning in Online Reinforcement Learning [92.18524491615548]
対照的な自己指導型学習は、(深層)強化学習(RL)の実践にうまく統合されている
我々は,低ランク遷移を伴うマルコフ決定過程(MDP)とマルコフゲーム(MG)のクラスにおいて,コントラスト学習によってRLをどのように強化できるかを検討する。
オンライン環境下では,MDPやMGのオンラインRLアルゴリズムと対照的な損失を生かした,新しい高信頼境界(UCB)型アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-07-29T17:29:08Z) - Learning Dynamics and Generalization in Reinforcement Learning [59.530058000689884]
時間差学習は, エージェントが訓練の初期段階において, 値関数の非平滑成分を適合させるのに役立つことを理論的に示す。
本研究では,高密度報酬タスクの時間差アルゴリズムを用いて学習したニューラルネットワークが,ランダムなネットワークや政策手法で学習した勾配ネットワークよりも,状態間の一般化が弱いことを示す。
論文 参考訳(メタデータ) (2022-06-05T08:49:16Z) - Robust Reinforcement Learning as a Stackelberg Game via
Adaptively-Regularized Adversarial Training [43.97565851415018]
ロバスト強化学習(RL)は、モデルエラーや敵攻撃によるパフォーマンス向上に重点を置いている。
既存の文献の多くは、解の概念としてナッシュ平衡を伴うゼロサム同時ゲームとして RARL をモデル化している。
RRL-Stackと呼ばれる一般のStackelbergゲームモデルである、ロバストなRLの階層的な新しい定式化を導入する。
論文 参考訳(メタデータ) (2022-02-19T03:44:05Z) - Autonomous Reinforcement Learning: Formalism and Benchmarking [106.25788536376007]
人間や動物が行うような現実世界の具体的学習は、連続的で非エポゾディックな世界にある。
RLの一般的なベンチマークタスクはエピソジックであり、試行錯誤によってエージェントに複数の試行を行う環境がリセットされる。
この相違は、擬似環境向けに開発されたRLアルゴリズムを現実世界のプラットフォーム上で実行しようとする場合、大きな課題となる。
論文 参考訳(メタデータ) (2021-12-17T16:28:06Z) - Combining Pessimism with Optimism for Robust and Efficient Model-Based
Deep Reinforcement Learning [56.17667147101263]
実世界のタスクでは、強化学習エージェントはトレーニング中に存在しない状況に遭遇する。
信頼性を確保するため、RLエージェントは最悪の状況に対して堅牢性を示す必要がある。
本稿では,Robust Hallucinated Upper-Confidence RL (RH-UCRL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-18T16:50:17Z) - SUNRISE: A Simple Unified Framework for Ensemble Learning in Deep
Reinforcement Learning [102.78958681141577]
SUNRISEは単純な統一アンサンブル法であり、様々な非政治的な深層強化学習アルゴリズムと互換性がある。
SUNRISEは, (a) アンサンブルに基づく重み付きベルマンバックアップと, (b) 最上位の自信境界を用いて行動を選択する推論手法を統合し, 効率的な探索を行う。
論文 参考訳(メタデータ) (2020-07-09T17:08:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。