Towards general deep-learning-based tree instance segmentation models
- URL: http://arxiv.org/abs/2405.02061v1
- Date: Fri, 3 May 2024 12:42:43 GMT
- Title: Towards general deep-learning-based tree instance segmentation models
- Authors: Jonathan Henrich, Jan van Delden,
- Abstract summary: Deep-learning methods have been proposed which show the potential of learning to segment trees.
We use seven diverse datasets found in literature to gain insights into the generalization capabilities under domain-shift.
Our results suggest that a generalization from coniferous dominated sparse point clouds to deciduous dominated high-resolution point clouds is possible.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The segmentation of individual trees from forest point clouds is a crucial task for downstream analyses such as carbon sequestration estimation. Recently, deep-learning-based methods have been proposed which show the potential of learning to segment trees. Since these methods are trained in a supervised way, the question arises how general models can be obtained that are applicable across a wide range of settings. So far, training has been mainly conducted with data from one specific laser scanning type and for specific types of forests. In this work, we train one segmentation model under various conditions, using seven diverse datasets found in literature, to gain insights into the generalization capabilities under domain-shift. Our results suggest that a generalization from coniferous dominated sparse point clouds to deciduous dominated high-resolution point clouds is possible. Conversely, qualitative evidence suggests that generalization from high-resolution to low-resolution point clouds is challenging. This emphasizes the need for forest point clouds with diverse data characteristics for model development. To enrich the available data basis, labeled trees from two previous works were propagated to the complete forest point cloud and are made publicly available at https://doi.org/10.25625/QUTUWU.
Related papers
- Forest Inspection Dataset for Aerial Semantic Segmentation and Depth
Estimation [6.635604919499181]
We introduce a new large aerial dataset for forest inspection.
It contains both real-world and virtual recordings of natural environments.
We develop a framework to assess the deforestation degree of an area.
arXiv Detail & Related papers (2024-03-11T11:26:44Z) - SegmentAnyTree: A sensor and platform agnostic deep learning model for
tree segmentation using laser scanning data [15.438892555484616]
This research advances individual tree crown (ITC) segmentation in lidar data, using a deep learning model applicable to various laser scanning types.
It addresses the challenge of transferability across different data characteristics in 3D forest scene analysis.
The model, based on PointGroup architecture, is a 3D CNN with separate heads for semantic and instance segmentation.
arXiv Detail & Related papers (2024-01-28T19:47:17Z) - Automated forest inventory: analysis of high-density airborne LiDAR
point clouds with 3D deep learning [16.071397465972893]
ForAINet is able to perform a segmentation across diverse forest types and geographic regions.
System has been tested on FOR-Instance, a dataset of point clouds that have been acquired in five different countries using surveying drones.
arXiv Detail & Related papers (2023-12-22T21:54:35Z) - Point Cloud Pre-training with Diffusion Models [62.12279263217138]
We propose a novel pre-training method called Point cloud Diffusion pre-training (PointDif)
PointDif achieves substantial improvement across various real-world datasets for diverse downstream tasks such as classification, segmentation and detection.
arXiv Detail & Related papers (2023-11-25T08:10:05Z) - TreeLearn: A Comprehensive Deep Learning Method for Segmenting
Individual Trees from Ground-Based LiDAR Forest Point Clouds [42.87502453001109]
We propose TreeLearn, a deep learning-based approach for tree instance segmentation of forest point clouds.
TreeLearn is trained on already segmented point clouds in a data-driven manner, making it less reliant on predefined features and algorithms.
We trained TreeLearn on forest point clouds of 6665 trees, labeled using the Lidar360 software.
arXiv Detail & Related papers (2023-09-15T15:20:16Z) - A Survey of Label-Efficient Deep Learning for 3D Point Clouds [109.07889215814589]
This paper presents the first comprehensive survey of label-efficient learning of point clouds.
We propose a taxonomy that organizes label-efficient learning methods based on the data prerequisites provided by different types of labels.
For each approach, we outline the problem setup and provide an extensive literature review that showcases relevant progress and challenges.
arXiv Detail & Related papers (2023-05-31T12:54:51Z) - Deep networks for system identification: a Survey [56.34005280792013]
System identification learns mathematical descriptions of dynamic systems from input-output data.
Main aim of the identified model is to predict new data from previous observations.
We discuss architectures commonly adopted in the literature, like feedforward, convolutional, and recurrent networks.
arXiv Detail & Related papers (2023-01-30T12:38:31Z) - Effective Utilisation of Multiple Open-Source Datasets to Improve
Generalisation Performance of Point Cloud Segmentation Models [0.0]
Semantic segmentation of aerial point cloud data can be utilised to differentiate which points belong to classes such as ground, buildings, or vegetation.
Point clouds generated from aerial sensors mounted to drones or planes can utilise LIDAR sensors or cameras along with photogrammetry.
We show that a naive combination of datasets produces a model with improved generalisation performance as expected.
arXiv Detail & Related papers (2022-11-29T02:31:01Z) - Self-Supervised Arbitrary-Scale Point Clouds Upsampling via Implicit
Neural Representation [79.60988242843437]
We propose a novel approach that achieves self-supervised and magnification-flexible point clouds upsampling simultaneously.
Experimental results demonstrate that our self-supervised learning based scheme achieves competitive or even better performance than supervised learning based state-of-the-art methods.
arXiv Detail & Related papers (2022-04-18T07:18:25Z) - Unsupervised Point Cloud Representation Learning with Deep Neural
Networks: A Survey [104.71816962689296]
Unsupervised point cloud representation learning has attracted increasing attention due to the constraint in large-scale point cloud labelling.
This paper provides a comprehensive review of unsupervised point cloud representation learning using deep neural networks.
arXiv Detail & Related papers (2022-02-28T07:46:05Z) - Cascaded Refinement Network for Point Cloud Completion with
Self-supervision [74.80746431691938]
We introduce a two-branch network for shape completion.
The first branch is a cascaded shape completion sub-network to synthesize complete objects.
The second branch is an auto-encoder to reconstruct the original partial input.
arXiv Detail & Related papers (2020-10-17T04:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.