Dyna-Style Learning with A Macroscopic Model for Vehicle Platooning in Mixed-Autonomy Traffic
- URL: http://arxiv.org/abs/2405.02062v1
- Date: Fri, 3 May 2024 12:44:52 GMT
- Title: Dyna-Style Learning with A Macroscopic Model for Vehicle Platooning in Mixed-Autonomy Traffic
- Authors: Yichuan Zou, Li Jin, Xi Xiong,
- Abstract summary: Platooning of connected and autonomous vehicles (CAVs) plays a vital role in modernizing highways, ushering in enhanced efficiency and safety.
This paper explores the significance of platooning in smart highways, employing a coupled partial differential equation (PDE) and ordinary differential equation (ODE) model.
Our study focuses on developing a Dyna-style planning and learning framework tailored for platoon control, with a specific goal of reducing fuel consumption.
- Score: 8.199735228589766
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Platooning of connected and autonomous vehicles (CAVs) plays a vital role in modernizing highways, ushering in enhanced efficiency and safety. This paper explores the significance of platooning in smart highways, employing a coupled partial differential equation (PDE) and ordinary differential equation (ODE) model to elucidate the complex interaction between bulk traffic flow and CAV platoons. Our study focuses on developing a Dyna-style planning and learning framework tailored for platoon control, with a specific goal of reducing fuel consumption. By harnessing the coupled PDE-ODE model, we improve data efficiency in Dyna-style learning through virtual experiences. Simulation results validate the effectiveness of our macroscopic model in modeling platoons within mixed-autonomy settings, demonstrating a notable $10.11\%$ reduction in vehicular fuel consumption compared to conventional approaches.
Related papers
- DiFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Self-Driving [55.53171248839489]
We propose an ego-centric fully sparse paradigm, named DiFSD, for end-to-end self-driving.
Specifically, DiFSD mainly consists of sparse perception, hierarchical interaction and iterative motion planner.
Experiments conducted on nuScenes and Bench2Drive datasets demonstrate the superior planning performance and great efficiency of DiFSD.
arXiv Detail & Related papers (2024-09-15T15:55:24Z) - A Nested Graph Reinforcement Learning-based Decision-making Strategy for Eco-platooning [15.543020132680997]
In large-scale mixed platoons, vehicle heterogeneity and unpredictable traffic conditions lead to virtual bottlenecks.
We introduce a decision-making strategy based on nested graph reinforcement learning.
This strategy improves collaborative decision-making, ensuring energy efficiency and alleviating congestion.
arXiv Detail & Related papers (2024-08-14T14:18:51Z) - Continual Learning for Adaptable Car-Following in Dynamic Traffic Environments [16.587883982785]
The continual evolution of autonomous driving technology requires car-following models that can adapt to diverse and dynamic traffic environments.
Traditional learning-based models often suffer from performance degradation when encountering unseen traffic patterns due to a lack of continual learning capabilities.
This paper proposes a novel car-following model based on continual learning that addresses this limitation.
arXiv Detail & Related papers (2024-07-17T06:32:52Z) - MetaFollower: Adaptable Personalized Autonomous Car Following [63.90050686330677]
We propose an adaptable personalized car-following framework - MetaFollower.
We first utilize Model-Agnostic Meta-Learning (MAML) to extract common driving knowledge from various CF events.
We additionally combine Long Short-Term Memory (LSTM) and Intelligent Driver Model (IDM) to reflect temporal heterogeneity with high interpretability.
arXiv Detail & Related papers (2024-06-23T15:30:40Z) - Adaptive and Parallel Split Federated Learning in Vehicular Edge Computing [6.004901615052089]
Vehicular edge intelligence (VEI) is a promising paradigm for enabling future intelligent transportation systems.
Federated learning (FL) is one of the fundamental technologies facilitating collaborative model training locally and aggregation.
We develop an Adaptive Split Federated Learning scheme for Vehicular Edge Computing (ASFV)
arXiv Detail & Related papers (2024-05-29T02:34:38Z) - Probing Multimodal LLMs as World Models for Driving [72.18727651074563]
We look at the application of Multimodal Large Language Models (MLLMs) in autonomous driving.
Despite advances in models like GPT-4o, their performance in complex driving environments remains largely unexplored.
arXiv Detail & Related papers (2024-05-09T17:52:42Z) - Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
A longstanding challenge for self-driving development is simulating dynamic driving scenarios seeded from recorded driving logs.
We apply tools from discrete sequence modeling to model how vehicles, pedestrians and cyclists interact in driving scenarios.
Our model tops the Sim Agents Benchmark, surpassing prior work along the realism meta metric by 3.3% and along the interaction metric by 9.9%.
arXiv Detail & Related papers (2023-12-07T18:53:27Z) - Model-Based Reinforcement Learning with Isolated Imaginations [61.67183143982074]
We propose Iso-Dream++, a model-based reinforcement learning approach.
We perform policy optimization based on the decoupled latent imaginations.
This enables long-horizon visuomotor control tasks to benefit from isolating mixed dynamics sources in the wild.
arXiv Detail & Related papers (2023-03-27T02:55:56Z) - Modeling Adaptive Platoon and Reservation Based Autonomous Intersection
Control: A Deep Reinforcement Learning Approach [0.0]
This study proposes an adaptive platoon based autonomous intersection control model powered by deep reinforcement learning (DRL) technique.
When tested on a traffic micro-simulator, our proposed model exhibits superior performances on travel efficiency and fuel conservation as compared to the state-of-the-art methods.
arXiv Detail & Related papers (2022-06-24T08:50:36Z) - Objective-aware Traffic Simulation via Inverse Reinforcement Learning [31.26257563160961]
We formulate traffic simulation as an inverse reinforcement learning problem.
We propose a parameter sharing adversarial inverse reinforcement learning model for dynamics-robust simulation learning.
Our proposed model is able to imitate a vehicle's trajectories in the real world while simultaneously recovering the reward function.
arXiv Detail & Related papers (2021-05-20T07:26:34Z) - Real-world Ride-hailing Vehicle Repositioning using Deep Reinforcement
Learning [52.2663102239029]
We present a new practical framework based on deep reinforcement learning and decision-time planning for real-world vehicle on idle-hailing platforms.
Our approach learns ride-based state-value function using a batch training algorithm with deep value.
We benchmark our algorithm with baselines in a ride-hailing simulation environment to demonstrate its superiority in improving income efficiency.
arXiv Detail & Related papers (2021-03-08T05:34:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.