A fuzzy loss for ontology classification
- URL: http://arxiv.org/abs/2405.02083v2
- Date: Mon, 19 Aug 2024 14:42:33 GMT
- Title: A fuzzy loss for ontology classification
- Authors: Simon Flügel, Martin Glauer, Till Mossakowski, Fabian Neuhaus,
- Abstract summary: We propose a fuzzy loss that combines label-based loss with terms penalising subsumption- or disjointness-violations.
We show that the fuzzy loss is able to decrease the number of consistency violations by several orders of magnitude without decreasing the classification performance.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Deep learning models are often unaware of the inherent constraints of the task they are applied to. However, many downstream tasks require logical consistency. For ontology classification tasks, such constraints include subsumption and disjointness relations between classes. In order to increase the consistency of deep learning models, we propose a fuzzy loss that combines label-based loss with terms penalising subsumption- or disjointness-violations. Our evaluation on the ChEBI ontology shows that the fuzzy loss is able to decrease the number of consistency violations by several orders of magnitude without decreasing the classification performance. In addition, we use the fuzzy loss for unsupervised learning. We show that this can further improve consistency on data from a
Related papers
- Large Margin Discriminative Loss for Classification [3.3975558777609915]
We introduce a novel discriminative loss function with large margin in the context of Deep Learning.
This loss boosts the discriminative power of neural nets, represented by intra-class compactness and inter-class separability.
arXiv Detail & Related papers (2024-05-28T18:10:45Z) - Controllable Relation Disentanglement for Few-Shot Class-Incremental Learning [82.79371269942146]
We propose to tackle FewShot Class-Incremental Learning (FSCIL) from a new perspective, i.e., relation disentanglement.
The challenge of disentangling spurious correlations lies in the poor controllability of FSCIL.
We propose a new simple-yeteffective method, called ConTrollable Relation-disentang FewShot Class-Incremental Learning (CTRL-FSCIL)
arXiv Detail & Related papers (2024-03-17T03:16:59Z) - On the Dynamics Under the Unhinged Loss and Beyond [104.49565602940699]
We introduce the unhinged loss, a concise loss function, that offers more mathematical opportunities to analyze closed-form dynamics.
The unhinged loss allows for considering more practical techniques, such as time-vary learning rates and feature normalization.
arXiv Detail & Related papers (2023-12-13T02:11:07Z) - Mitigating Catastrophic Forgetting in Task-Incremental Continual
Learning with Adaptive Classification Criterion [50.03041373044267]
We propose a Supervised Contrastive learning framework with adaptive classification criterion for Continual Learning.
Experiments show that CFL achieves state-of-the-art performance and has a stronger ability to overcome compared with the classification baselines.
arXiv Detail & Related papers (2023-05-20T19:22:40Z) - Prototype-Anchored Learning for Learning with Imperfect Annotations [83.7763875464011]
It is challenging to learn unbiased classification models from imperfectly annotated datasets.
We propose a prototype-anchored learning (PAL) method, which can be easily incorporated into various learning-based classification schemes.
We verify the effectiveness of PAL on class-imbalanced learning and noise-tolerant learning by extensive experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2022-06-23T10:25:37Z) - Leveraging Unlabeled Data for Entity-Relation Extraction through
Probabilistic Constraint Satisfaction [54.06292969184476]
We study the problem of entity-relation extraction in the presence of symbolic domain knowledge.
Our approach employs semantic loss which captures the precise meaning of a logical sentence.
With a focus on low-data regimes, we show that semantic loss outperforms the baselines by a wide margin.
arXiv Detail & Related papers (2021-03-20T00:16:29Z) - Lower-bounded proper losses for weakly supervised classification [73.974163801142]
We discuss the problem of weakly supervised learning of classification, in which instances are given weak labels.
We derive a representation theorem for proper losses in supervised learning, which dualizes the Savage representation.
We experimentally demonstrate the effectiveness of our proposed approach, as compared to improper or unbounded losses.
arXiv Detail & Related papers (2021-03-04T08:47:07Z) - Robustifying Binary Classification to Adversarial Perturbation [45.347651499585055]
In this paper we consider the problem of binary classification with adversarial perturbations.
We introduce a generalization to the max-margin classifier which takes into account the power of the adversary in manipulating the data.
Under some mild assumptions on the loss function, we theoretically show that the gradient descents converge to the RM classifier in its direction.
arXiv Detail & Related papers (2020-10-29T07:20:37Z) - Learning Gradient Boosted Multi-label Classification Rules [4.842945656927122]
We propose an algorithm for learning multi-label classification rules that is able to minimize decomposable as well as non-decomposable loss functions.
We analyze the abilities and limitations of our approach on synthetic data and evaluate its predictive performance on multi-label benchmarks.
arXiv Detail & Related papers (2020-06-23T21:39:23Z) - Hierarchical Class-Based Curriculum Loss [18.941207332233805]
Most real world data have dependencies between labels, which can be captured by using a hierarchy.
We propose a loss function, hierarchical curriculum loss, with two properties: (i) satisfy hierarchical constraints present in the label space, and (ii) provide non-uniform weights to labels based on their levels in the hierarchy.
arXiv Detail & Related papers (2020-06-05T18:48:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.