Controllable Relation Disentanglement for Few-Shot Class-Incremental Learning
- URL: http://arxiv.org/abs/2403.11070v1
- Date: Sun, 17 Mar 2024 03:16:59 GMT
- Title: Controllable Relation Disentanglement for Few-Shot Class-Incremental Learning
- Authors: Yuan Zhou, Richang Hong, Yanrong Guo, Lin Liu, Shijie Hao, Hanwang Zhang,
- Abstract summary: We propose to tackle FewShot Class-Incremental Learning (FSCIL) from a new perspective, i.e., relation disentanglement.
The challenge of disentangling spurious correlations lies in the poor controllability of FSCIL.
We propose a new simple-yeteffective method, called ConTrollable Relation-disentang FewShot Class-Incremental Learning (CTRL-FSCIL)
- Score: 82.79371269942146
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose to tackle Few-Shot Class-Incremental Learning (FSCIL) from a new perspective, i.e., relation disentanglement, which means enhancing FSCIL via disentangling spurious relation between categories. The challenge of disentangling spurious correlations lies in the poor controllability of FSCIL. On one hand, an FSCIL model is required to be trained in an incremental manner and thus it is very hard to directly control relationships between categories of different sessions. On the other hand, training samples per novel category are only in the few-shot setting, which increases the difficulty of alleviating spurious relation issues as well. To overcome this challenge, in this paper, we propose a new simple-yet-effective method, called ConTrollable Relation-disentangLed Few-Shot Class-Incremental Learning (CTRL-FSCIL). Specifically, during the base session, we propose to anchor base category embeddings in feature space and construct disentanglement proxies to bridge gaps between the learning for category representations in different sessions, thereby making category relation controllable. During incremental learning, the parameters of the backbone network are frozen in order to relieve the negative impact of data scarcity. Moreover, a disentanglement loss is designed to effectively guide a relation disentanglement controller to disentangle spurious correlations between the embeddings encoded by the backbone. In this way, the spurious correlation issue in FSCIL can be suppressed. Extensive experiments on CIFAR-100, mini-ImageNet, and CUB-200 datasets demonstrate the effectiveness of our CTRL-FSCIL method.
Related papers
- CLOSER: Towards Better Representation Learning for Few-Shot Class-Incremental Learning [52.63674911541416]
Few-shot class-incremental learning (FSCIL) faces several challenges, such as overfitting and forgetting.
Our primary focus is representation learning on base classes to tackle the unique challenge of FSCIL.
We find that trying to secure the spread of features within a more confined feature space enables the learned representation to strike a better balance between transferability and discriminability.
arXiv Detail & Related papers (2024-10-08T02:23:16Z) - Bayesian Learning-driven Prototypical Contrastive Loss for Class-Incremental Learning [42.14439854721613]
We propose a prototypical network with a Bayesian learning-driven contrastive loss (BLCL) tailored specifically for class-incremental learning scenarios.
Our approach dynamically adapts the balance between the cross-entropy and contrastive loss functions with a Bayesian learning technique.
arXiv Detail & Related papers (2024-05-17T19:49:02Z) - Relaxed Contrastive Learning for Federated Learning [48.96253206661268]
We propose a novel contrastive learning framework to address the challenges of data heterogeneity in federated learning.
Our framework outperforms all existing federated learning approaches by huge margins on the standard benchmarks.
arXiv Detail & Related papers (2024-01-10T04:55:24Z) - Balanced Classification: A Unified Framework for Long-Tailed Object
Detection [74.94216414011326]
Conventional detectors suffer from performance degradation when dealing with long-tailed data due to a classification bias towards the majority head categories.
We introduce a unified framework called BAlanced CLassification (BACL), which enables adaptive rectification of inequalities caused by disparities in category distribution.
BACL consistently achieves performance improvements across various datasets with different backbones and architectures.
arXiv Detail & Related papers (2023-08-04T09:11:07Z) - Combating Exacerbated Heterogeneity for Robust Models in Federated
Learning [91.88122934924435]
Combination of adversarial training and federated learning can lead to the undesired robustness deterioration.
We propose a novel framework called Slack Federated Adversarial Training (SFAT)
We verify the rationality and effectiveness of SFAT on various benchmarked and real-world datasets.
arXiv Detail & Related papers (2023-03-01T06:16:15Z) - Rethinking Few-Shot Class-Incremental Learning with Open-Set Hypothesis
in Hyperbolic Geometry [21.38183613466714]
Few-Shot Class-Incremental Learning (FSCIL) aims at incrementally learning novel classes from a few labeled samples.
In this paper, we rethink the configuration of FSCIL with the open-set hypothesis by reserving the possibility in the first session for incoming categories.
To assign better performances on both close-set and open-set recognition to the model, Hyperbolic Reciprocal Point Learning module (Hyper-RPL) is built on Reciprocal Point Learning (RPL) with hyperbolic neural networks.
arXiv Detail & Related papers (2022-07-20T15:13:48Z) - R-DFCIL: Relation-Guided Representation Learning for Data-Free Class
Incremental Learning [64.7996065569457]
Class-Incremental Learning (CIL) struggles with catastrophic forgetting when learning new knowledge.
Recent DFCIL works introduce techniques such as model inversion to synthesize data for previous classes, they fail to overcome forgetting due to the severe domain gap between the synthetic and real data.
This paper proposes relation-guided representation learning (RRL) for DFCIL, dubbed R-DFCIL.
arXiv Detail & Related papers (2022-03-24T14:54:15Z) - Learning and Exploiting Interclass Visual Correlations for Medical Image
Classification [30.88175218665726]
We present the Class-Correlation Learning Network (CCL-Net) to learn interclass visual correlations from given training data.
Instead of letting the network directly learn the desired correlations, we propose to learn them implicitly via distance metric learning of class-specific embeddings.
An intuitive loss based on a geometrical explanation of correlation is designed for bolstering learning of the interclass correlations.
arXiv Detail & Related papers (2020-07-13T13:31:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.