Discrete Aware Matrix Completion via Convexized $\ell_0$-Norm Approximation
- URL: http://arxiv.org/abs/2405.02101v2
- Date: Wed, 06 Nov 2024 14:50:24 GMT
- Title: Discrete Aware Matrix Completion via Convexized $\ell_0$-Norm Approximation
- Authors: Niclas Führling, Kengo Ando, Giuseppe Thadeu Freitas de Abreu, David González G., Osvaldo Gonsa,
- Abstract summary: We consider a novel algorithm for the completion of partially observed low-rank matrices in a structured setting.
The proposed low-rank matrix completion (MC) method is an improved variation of state-of-the-art (SotA) discrete aware matrix completion method.
- Score: 7.447205347712796
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider a novel algorithm, for the completion of partially observed low-rank matrices in a structured setting where each entry can be chosen from a finite discrete alphabet set, such as in common recommender systems. The proposed low-rank matrix completion (MC) method is an improved variation of state-of-the-art (SotA) discrete aware matrix completion method which we previously proposed, in which discreteness is enforced by an $\ell_0$-norm regularizer, not by replaced with the $\ell_1$-norm, but instead approximated by a continuous and differentiable function normalized via fractional programming (FP) under a proximal gradient (PG) framework. Simulation results demonstrate the superior performance of the new method compared to the SotA techniques as well as the earlier $\ell_1$-norm-based discrete-aware matrix completion approach.
Related papers
- Achieving $\widetilde{\mathcal{O}}(\sqrt{T})$ Regret in Average-Reward POMDPs with Known Observation Models [56.92178753201331]
We tackle average-reward infinite-horizon POMDPs with an unknown transition model.
We present a novel and simple estimator that overcomes this barrier.
arXiv Detail & Related papers (2025-01-30T22:29:41Z) - Model-free Low-Rank Reinforcement Learning via Leveraged Entry-wise Matrix Estimation [48.92318828548911]
We present LoRa-PI (Low-Rank Policy Iteration), a model-free learning algorithm alternating between policy improvement and policy evaluation steps.
LoRa-PI learns an $varepsilon$-optimal policy using $widetildeO(S+Aover mathrmpoly (1-gamma)varepsilon2)$ samples where $S$ denotes the number of states (resp. actions) and $gamma$ the discount factor.
arXiv Detail & Related papers (2024-10-30T20:22:17Z) - Regularized Projection Matrix Approximation with Applications to Community Detection [1.3761665705201904]
This paper introduces a regularized projection matrix approximation framework designed to recover cluster information from the affinity matrix.
We investigate three distinct penalty functions, each specifically tailored to address bounded, positive, and sparse scenarios.
Numerical experiments conducted on both synthetic and real-world datasets reveal that our regularized projection matrix approximation approach significantly outperforms state-of-the-art methods in clustering performance.
arXiv Detail & Related papers (2024-05-26T15:18:22Z) - Unified Projection-Free Algorithms for Adversarial DR-Submodular Optimization [28.598226670015315]
This paper introduces unified projection-free Frank-Wolfe type algorithms for adversarial DR-submodular optimization.
For every problem considered in the non-monotone setting, the proposed algorithms are either the first with proven sub-linear $alpha$-regret bounds or have better $alpha$-regret bounds than the state of the art.
arXiv Detail & Related papers (2024-03-15T07:05:44Z) - Log-based Sparse Nonnegative Matrix Factorization for Data
Representation [55.72494900138061]
Nonnegative matrix factorization (NMF) has been widely studied in recent years due to its effectiveness in representing nonnegative data with parts-based representations.
We propose a new NMF method with log-norm imposed on the factor matrices to enhance the sparseness.
A novel column-wisely sparse norm, named $ell_2,log$-(pseudo) norm, is proposed to enhance the robustness of the proposed method.
arXiv Detail & Related papers (2022-04-22T11:38:10Z) - Faster One-Sample Stochastic Conditional Gradient Method for Composite
Convex Minimization [61.26619639722804]
We propose a conditional gradient method (CGM) for minimizing convex finite-sum objectives formed as a sum of smooth and non-smooth terms.
The proposed method, equipped with an average gradient (SAG) estimator, requires only one sample per iteration. Nevertheless, it guarantees fast convergence rates on par with more sophisticated variance reduction techniques.
arXiv Detail & Related papers (2022-02-26T19:10:48Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
We study optimization of areas under precision-recall curves (AUPRC), which is widely used for imbalanced tasks.
We develop novel momentum methods with a better iteration of $O (1/epsilon4)$ for finding an $epsilon$stationary solution.
We also design a novel family of adaptive methods with the same complexity of $O (1/epsilon4)$, which enjoy faster convergence in practice.
arXiv Detail & Related papers (2021-07-02T16:21:52Z) - A Scalable Second Order Method for Ill-Conditioned Matrix Completion
from Few Samples [0.0]
We propose an iterative algorithm for low-rank matrix completion.
It is able to complete very ill-conditioned matrices with a condition number of up to $10$ from few samples.
arXiv Detail & Related papers (2021-06-03T20:31:00Z) - On the Efficient Implementation of the Matrix Exponentiated Gradient
Algorithm for Low-Rank Matrix Optimization [26.858608065417663]
Convex optimization over the spectrahedron has important applications in machine learning, signal processing and statistics.
We propose efficient implementations of MEG, which are tailored for optimization with low-rank matrices, and only use a single low-rank SVD on each iteration.
We also provide efficiently-computable certificates for the correct convergence of our methods.
arXiv Detail & Related papers (2020-12-18T19:14:51Z) - Robust Low-rank Matrix Completion via an Alternating Manifold Proximal
Gradient Continuation Method [47.80060761046752]
Robust low-rank matrix completion (RMC) has been studied extensively for computer vision, signal processing and machine learning applications.
This problem aims to decompose a partially observed matrix into the superposition of a low-rank matrix and a sparse matrix, where the sparse matrix captures the grossly corrupted entries of the matrix.
A widely used approach to tackle RMC is to consider a convex formulation, which minimizes the nuclear norm of the low-rank matrix (to promote low-rankness) and the l1 norm of the sparse matrix (to promote sparsity).
In this paper, motivated by some recent works on low-
arXiv Detail & Related papers (2020-08-18T04:46:22Z) - Multi-Objective Matrix Normalization for Fine-grained Visual Recognition [153.49014114484424]
Bilinear pooling achieves great success in fine-grained visual recognition (FGVC)
Recent methods have shown that the matrix power normalization can stabilize the second-order information in bilinear features.
We propose an efficient Multi-Objective Matrix Normalization (MOMN) method that can simultaneously normalize a bilinear representation.
arXiv Detail & Related papers (2020-03-30T08:40:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.