Perfect state transfer on Cayley graphs over a non-abelian group of order $8n$
- URL: http://arxiv.org/abs/2405.02122v2
- Date: Tue, 25 Jun 2024 15:54:39 GMT
- Title: Perfect state transfer on Cayley graphs over a non-abelian group of order $8n$
- Authors: Akash Kalita, Bikash Bhattacharjya,
- Abstract summary: We study the existence of perfect state transfer on Cayley graphs $textCay(V_8n, S)$.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The \textit{transition matrix} of a graph $\Gamma$ with adjacency matrix $A$ is defined by $H(\tau ) := \exp(-\mathbf{i}\tau A)$, where $\tau \in \mathbb{R}$ and $\mathbf{i} = \sqrt{-1}$. The graph $\Gamma$ exhibits \textit{perfect state transfer} (PST) between the vertices $u$ and $v$ if there exists $\tau_0(>0)\in \mathbb{R}$ such that $\lvert H(\tau_0)_{uv} \rvert = 1$. For a positive integer $n$, the group $V_{8n}$ is defined as $V_{8n} := \langle a,b \colon a^{2n} = b^{4} = 1, ba = a^{-1}b^{-1}, b^{-1}a = a^{-1}b \rangle$. In this paper, we study the existence of perfect state transfer on Cayley graphs $\text{Cay}(V_{8n}, S)$. We present some necessary and sufficient conditions for the existence of perfect state transfer on $\text{Cay}(V_{8n}, S)$.
Related papers
- The Communication Complexity of Approximating Matrix Rank [50.6867896228563]
We show that this problem has randomized communication complexity $Omega(frac1kcdot n2log|mathbbF|)$.
As an application, we obtain an $Omega(frac1kcdot n2log|mathbbF|)$ space lower bound for any streaming algorithm with $k$ passes.
arXiv Detail & Related papers (2024-10-26T06:21:42Z) - LevAttention: Time, Space, and Streaming Efficient Algorithm for Heavy Attentions [54.54897832889028]
We show that for any $K$, there is a universal set" $U subset [n]$ of size independent of $n$, such that for any $Q$ and any row $i$, the large attention scores $A_i,j$ in row $i$ of $A$ all have $jin U$.
We empirically show the benefits of our scheme for vision transformers, showing how to train new models that use our universal set while training as well.
arXiv Detail & Related papers (2024-10-07T19:47:13Z) - Efficient Continual Finite-Sum Minimization [52.5238287567572]
We propose a key twist into the finite-sum minimization, dubbed as continual finite-sum minimization.
Our approach significantly improves upon the $mathcalO(n/epsilon)$ FOs that $mathrmStochasticGradientDescent$ requires.
We also prove that there is no natural first-order method with $mathcalOleft(n/epsilonalpharight)$ complexity gradient for $alpha 1/4$, establishing that the first-order complexity of our method is nearly tight.
arXiv Detail & Related papers (2024-06-07T08:26:31Z) - A note on estimating the dimension from a random geometric graph [2.3020018305241337]
We study the problem of estimating the dimension $d$ of the underlying space when we have access to the adjacency matrix of the graph.
We also show that, without any condition on the density, a consistent estimator of $d$ exists when $n r_nd to infty$ and $r_n = o(1)$.
arXiv Detail & Related papers (2023-11-21T23:46:44Z) - On Outer Bi-Lipschitz Extensions of Linear Johnson-Lindenstrauss
Embeddings of Low-Dimensional Submanifolds of $\mathbb{R}^N$ [0.24366811507669117]
Let $mathcalM$ be a compact $d$-dimensional submanifold of $mathbbRN$ with reach $tau$ and volume $V_mathcal M$.
We prove that a nonlinear function $f: mathbbRN rightarrow mathbbRmm exists with $m leq C left(d / epsilon2right) log left(fracsqrt[d]V_math
arXiv Detail & Related papers (2022-06-07T15:10:46Z) - Low-Rank Approximation with $1/\epsilon^{1/3}$ Matrix-Vector Products [58.05771390012827]
We study iterative methods based on Krylov subspaces for low-rank approximation under any Schatten-$p$ norm.
Our main result is an algorithm that uses only $tildeO(k/sqrtepsilon)$ matrix-vector products.
arXiv Detail & Related papers (2022-02-10T16:10:41Z) - Learning low-degree functions from a logarithmic number of random
queries [77.34726150561087]
We prove that for any integer $ninmathbbN$, $din1,ldots,n$ and any $varepsilon,deltain(0,1)$, a bounded function $f:-1,1nto[-1,1]$ of degree at most $d$ can be learned.
arXiv Detail & Related papers (2021-09-21T13:19:04Z) - A common variable minimax theorem for graphs [3.0079490585515343]
We study the problem of understanding whether there exists a nonconstant function that is smooth with respect to all graphs in $mathcalG$, simultaneously, and how to find it if it exists.
arXiv Detail & Related papers (2021-07-30T16:47:25Z) - The planted matching problem: Sharp threshold and infinite-order phase
transition [25.41713098167692]
We study the problem of reconstructing a perfect matching $M*$ hidden in a randomly weighted $ntimes n$ bipartite graph.
We show that if $sqrtd B(mathcalP,mathcalQ) ge 1+epsilon$ for an arbitrarily small constant $epsilon>0$, the reconstruction error for any estimator is shown to be bounded away from $0$.
arXiv Detail & Related papers (2021-03-17T00:59:33Z) - Linear Bandits on Uniformly Convex Sets [88.3673525964507]
Linear bandit algorithms yield $tildemathcalO(nsqrtT)$ pseudo-regret bounds on compact convex action sets.
Two types of structural assumptions lead to better pseudo-regret bounds.
arXiv Detail & Related papers (2021-03-10T07:33:03Z) - Some convergent results for Backtracking Gradient Descent method on
Banach spaces [0.0]
bf Theorem. Let $X$ be a Banach space and $f:Xrightarrow mathbbR$ be a $C2$ function.
Let $mathcalC$ be the set of critical points of $f$.
arXiv Detail & Related papers (2020-01-16T12:49:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.