EEG2TEXT: Open Vocabulary EEG-to-Text Decoding with EEG Pre-Training and Multi-View Transformer
- URL: http://arxiv.org/abs/2405.02165v1
- Date: Fri, 3 May 2024 15:14:19 GMT
- Title: EEG2TEXT: Open Vocabulary EEG-to-Text Decoding with EEG Pre-Training and Multi-View Transformer
- Authors: Hanwen Liu, Daniel Hajialigol, Benny Antony, Aiguo Han, Xuan Wang,
- Abstract summary: We propose a novel method to improve the accuracy of EEG-to-text decoding.
EEG2 TEXTURE shows great potential for a high-performance open-vocabulary brain-to-text system to facilitate communication.
- Score: 4.863362296028391
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deciphering the intricacies of the human brain has captivated curiosity for centuries. Recent strides in Brain-Computer Interface (BCI) technology, particularly using motor imagery, have restored motor functions such as reaching, grasping, and walking in paralyzed individuals. However, unraveling natural language from brain signals remains a formidable challenge. Electroencephalography (EEG) is a non-invasive technique used to record electrical activity in the brain by placing electrodes on the scalp. Previous studies of EEG-to-text decoding have achieved high accuracy on small closed vocabularies, but still fall short of high accuracy when dealing with large open vocabularies. We propose a novel method, EEG2TEXT, to improve the accuracy of open vocabulary EEG-to-text decoding. Specifically, EEG2TEXT leverages EEG pre-training to enhance the learning of semantics from EEG signals and proposes a multi-view transformer to model the EEG signal processing by different spatial regions of the brain. Experiments show that EEG2TEXT has superior performance, outperforming the state-of-the-art baseline methods by a large margin of up to 5% in absolute BLEU and ROUGE scores. EEG2TEXT shows great potential for a high-performance open-vocabulary brain-to-text system to facilitate communication.
Related papers
- BrainECHO: Semantic Brain Signal Decoding through Vector-Quantized Spectrogram Reconstruction for Whisper-Enhanced Text Generation [29.78480739360263]
We propose a new multi-stage strategy for semantic brain signal decoding via vEctor-quantized speCtrogram reconstruction.
BrainECHO successively conducts: 1) autoencoding of the audio spectrogram; 2) Brain-audio latent space alignment; and 3) Semantic text generation via Whisper finetuning.
BrainECHO outperforms state-of-the-art methods under the same data split settings on two widely accepted resources.
arXiv Detail & Related papers (2024-10-19T04:29:03Z) - SEE: Semantically Aligned EEG-to-Text Translation [5.460650382586978]
Decoding neurophysiological signals into language is of great research interest within brain-computer interface (BCI) applications.
Current EEG-to-Text decoding approaches face challenges due to the huge domain gap between EEG recordings and raw texts.
We propose SEE: Semantically Aligned EEG-to-Text Translation, a novel method aimed at improving EEG-to-Text decoding.
arXiv Detail & Related papers (2024-09-14T05:37:15Z) - Enhancing EEG-to-Text Decoding through Transferable Representations from Pre-trained Contrastive EEG-Text Masked Autoencoder [69.7813498468116]
We propose Contrastive EEG-Text Masked Autoencoder (CET-MAE), a novel model that orchestrates compound self-supervised learning across and within EEG and text.
We also develop a framework called E2T-PTR (EEG-to-Text decoding using Pretrained Transferable Representations) to decode text from EEG sequences.
arXiv Detail & Related papers (2024-02-27T11:45:21Z) - A Knowledge-Driven Cross-view Contrastive Learning for EEG
Representation [48.85731427874065]
This paper proposes a knowledge-driven cross-view contrastive learning framework (KDC2) to extract effective representations from EEG with limited labels.
The KDC2 method creates scalp and neural views of EEG signals, simulating the internal and external representation of brain activity.
By modeling prior neural knowledge based on neural information consistency theory, the proposed method extracts invariant and complementary neural knowledge to generate combined representations.
arXiv Detail & Related papers (2023-09-21T08:53:51Z) - Task-oriented Self-supervised Learning for Anomaly Detection in
Electroencephalography [51.45515911920534]
A task-oriented self-supervised learning approach is proposed to train a more effective anomaly detector.
A specific two branch convolutional neural network with larger kernels is designed as the feature extractor.
The effectively designed and trained feature extractor has shown to be able to extract better feature representations from EEGs.
arXiv Detail & Related papers (2022-07-04T13:15:08Z) - Open Vocabulary Electroencephalography-To-Text Decoding and Zero-shot
Sentiment Classification [78.120927891455]
State-of-the-art brain-to-text systems have achieved great success in decoding language directly from brain signals using neural networks.
In this paper, we extend the problem to open vocabulary Electroencephalography(EEG)-To-Text Sequence-To-Sequence decoding and zero-shot sentence sentiment classification on natural reading tasks.
Our model achieves a 40.1% BLEU-1 score on EEG-To-Text decoding and a 55.6% F1 score on zero-shot EEG-based ternary sentiment classification, which significantly outperforms supervised baselines.
arXiv Detail & Related papers (2021-12-05T21:57:22Z) - Decoding EEG Brain Activity for Multi-Modal Natural Language Processing [9.35961671939495]
We present the first large-scale study of systematically analyzing the potential of EEG brain activity data for improving natural language processing tasks.
We find that filtering the EEG signals into frequency bands is more beneficial than using the broadband signal.
For a range of word embedding types, EEG data improves binary and ternary sentiment classification and outperforms multiple baselines.
arXiv Detail & Related papers (2021-02-17T09:44:21Z) - A Novel Transferability Attention Neural Network Model for EEG Emotion
Recognition [51.203579838210885]
We propose a transferable attention neural network (TANN) for EEG emotion recognition.
TANN learns the emotional discriminative information by highlighting the transferable EEG brain regions data and samples adaptively.
This can be implemented by measuring the outputs of multiple brain-region-level discriminators and one single sample-level discriminator.
arXiv Detail & Related papers (2020-09-21T02:42:30Z) - EEG-based Brain-Computer Interfaces (BCIs): A Survey of Recent Studies
on Signal Sensing Technologies and Computational Intelligence Approaches and
their Applications [65.32004302942218]
Brain-Computer Interface (BCI) is a powerful communication tool between users and systems.
Recent technological advances have increased interest in electroencephalographic (EEG) based BCI for translational and healthcare applications.
arXiv Detail & Related papers (2020-01-28T10:36:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.