論文の概要: Training-Free Deepfake Voice Recognition by Leveraging Large-Scale Pre-Trained Models
- arxiv url: http://arxiv.org/abs/2405.02179v1
- Date: Fri, 3 May 2024 15:27:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-06 12:26:23.808179
- Title: Training-Free Deepfake Voice Recognition by Leveraging Large-Scale Pre-Trained Models
- Title(参考訳): 大規模事前学習モデルの活用による学習不要なディープフェイク音声認識
- Authors: Alessandro Pianese, Davide Cozzolino, Giovanni Poggi, Luisa Verdoliva,
- Abstract要約: 一般化は、現在のオーディオディープフェイク検出器の主な問題である。
本稿では,オーディオディープフェイク検出のための大規模事前学習モデルの可能性について検討する。
- 参考スコア(独自算出の注目度): 52.04189118767758
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generalization is a main issue for current audio deepfake detectors, which struggle to provide reliable results on out-of-distribution data. Given the speed at which more and more accurate synthesis methods are developed, it is very important to design techniques that work well also on data they were not trained for.In this paper we study the potential of large-scale pre-trained models for audio deepfake detection, with special focus on generalization ability. To this end, the detection problem is reformulated in a speaker verification framework and fake audios are exposed by the mismatch between the voice sample under test and the voice of the claimed identity. With this paradigm, no fake speech sample is necessary in training, cutting off any link with the generation method at the root, and ensuring full generalization ability. Features are extracted by general-purpose large pre-trained models, with no need for training or fine-tuning on specific fake detection or speaker verification datasets. At detection time only a limited set of voice fragments of the identity under test is required. Experiments on several datasets widespread in the community show that detectors based on pre-trained models achieve excellent performance and show strong generalization ability, rivaling supervised methods on in-distribution data and largely overcoming them on out-of-distribution data.
- Abstract(参考訳): 一般化は現在のオーディオディープフェイク検出器の主要な問題であり、アウト・オブ・ディストリビューションデータに対する信頼性の高い結果の提供に苦慮している。
より正確な合成法が開発されるスピードを考えると、訓練を受けていないデータでもうまく機能する手法を設計することが重要であり、特に一般化能力に焦点をあてて、音声深度検出のための大規模事前学習モデルの可能性について検討する。
この目的のために、話者検証フレームワークで検出問題を修正し、テスト中の音声サンプルとクレームIDの音声とのミスマッチにより偽音声を露呈する。
このパラダイムでは、訓練に偽の音声サンプルは不要であり、ルートにおける生成方法とのリンクを切断し、完全な一般化能力を確保する。
機能は汎用的な大規模な事前訓練モデルによって抽出され、特定の偽検出や話者検証データセットのトレーニングや微調整は不要である。
検出時には、テスト中のアイデンティティの限定された音声断片のみが必要となる。
コミュニティに広く普及しているいくつかのデータセットの実験では、事前学習されたモデルに基づく検出器は優れた性能を示し、強力な一般化能力を示す。
関連論文リスト
- Leveraging Mixture of Experts for Improved Speech Deepfake Detection [53.69740463004446]
スピーチのディープフェイクは、個人のセキュリティとコンテンツの信頼性に重大な脅威をもたらす。
本研究では,Mixture of Expertsアーキテクチャを用いた音声深度検出性能の向上のための新しい手法を提案する。
論文 参考訳(メタデータ) (2024-09-24T13:24:03Z) - Statistics-aware Audio-visual Deepfake Detector [11.671275975119089]
オーディオ・ヴィジュアルフェイク検出の手法は、主に音声と視覚の特徴の同期を評価する。
モデルの識別能力を高めるため,統計的特徴損失を提案する。
DFDCおよびFakeAVCelebデータセットの実験により,提案手法の妥当性が示された。
論文 参考訳(メタデータ) (2024-07-16T12:15:41Z) - Targeted Augmented Data for Audio Deepfake Detection [11.671275975119089]
そこで本研究では,モデルの決定境界をターゲットとした音声疑似フェイク生成手法を提案する。
敵の攻撃に触発されて、元の実際のデータを摂動させ、不明瞭な予測確率で擬似フェイクを合成する。
論文 参考訳(メタデータ) (2024-07-10T12:31:53Z) - What to Remember: Self-Adaptive Continual Learning for Audio Deepfake
Detection [53.063161380423715]
既存の検出モデルは、既知のディープフェイク音声を識別することに成功したが、新しい攻撃タイプに遭遇する際には苦労している。
本稿では,Radian Weight Modification (RWM) と呼ばれる連続的な学習手法を提案する。
論文 参考訳(メタデータ) (2023-12-15T09:52:17Z) - On the Universal Adversarial Perturbations for Efficient Data-free
Adversarial Detection [55.73320979733527]
本稿では,UAPに対して正常サンプルと逆サンプルの異なる応答を誘導する,データに依存しない逆検出フレームワークを提案する。
実験結果から,本手法は様々なテキスト分類タスクにおいて,競合検出性能を実現することが示された。
論文 参考訳(メタデータ) (2023-06-27T02:54:07Z) - Deepfake audio detection by speaker verification [79.99653758293277]
本研究では,話者の生体特性のみを活用する新しい検出手法を提案する。
提案手法は,既成話者検証ツールに基づいて実装することができる。
そこで我々は,3つの一般的なテストセット上で,優れた性能,高い一般化能力,高ロバスト性を有する音声障害に対する高ロバスト性を検証した。
論文 参考訳(メタデータ) (2022-09-28T13:46:29Z) - Label-Efficient Self-Supervised Speaker Verification With Information
Maximization and Contrastive Learning [0.0]
生音声から直接表現を学習することによる話者検証のための自己教師型学習について検討する。
我々のアプローチは、最近の情報学習フレームワークと集中的なデータ前処理ステップに基づいています。
論文 参考訳(メタデータ) (2022-07-12T13:01:55Z) - Reinforcement Guided Multi-Task Learning Framework for Low-Resource
Stereotype Detection [3.7223111129285096]
ステレオタイプ検出」データセットは主に、大規模な事前学習言語モデルに対する診断アプローチを採用している。
信頼できるデータセットに注釈をつけるには、テキストでステレオタイプがどのように現れるかという微妙なニュアンスを正確に理解する必要がある。
我々は「ステレオタイプ検出」における経験的性能を改善するために、データ豊富な隣接タスクの多元性を活用するマルチタスクモデルを提案する。
論文 参考訳(メタデータ) (2022-03-27T17:16:11Z) - Self-supervised Transformer for Deepfake Detection [112.81127845409002]
現実世界のシナリオにおけるディープフェイク技術は、顔偽造検知器のより強力な一般化能力を必要とする。
転送学習に触発されて、他の大規模な顔関連タスクで事前訓練されたニューラルネットワークは、ディープフェイク検出に有用な機能を提供する可能性がある。
本稿では,自己教師型変換器を用いた音声視覚コントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2022-03-02T17:44:40Z) - Cross-Referencing Self-Training Network for Sound Event Detection in
Audio Mixtures [23.568610919253352]
本稿では,教師なしデータから擬似ラベルを生成するための半教師付き手法を提案する。
DESEDデータベースの「検証」と「公開評価」の双方に関するこれらの手法の結果は、半教師あり学習における最先端技術システムと比較して著しく改善された。
論文 参考訳(メタデータ) (2021-05-27T18:46:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。