Comparing the decoherence effects due to black holes versus ordinary matter
- URL: http://arxiv.org/abs/2405.02227v1
- Date: Fri, 3 May 2024 16:35:10 GMT
- Title: Comparing the decoherence effects due to black holes versus ordinary matter
- Authors: Anna Biggs, Juan Maldacena,
- Abstract summary: A certain thought experiment was discussed which involves the decoherence of a quantum system due to a black hole.
We show how this phenomenon is consistent with standard ideas about quantum black holes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently a certain thought experiment was discussed which involves the decoherence of a quantum system due to a black hole. Here we show how this phenomenon is consistent with standard ideas about quantum black holes. In other words, modeling the black hole as a quantum system at finite temperature one obtains the same answer. We demonstrate this by analyzing the problem in terms of an effective theory that can apply both for the black hole case and for an ordinary matter system, showing that the same qualitative effect is present for ordinary matter at finite temperature.
Related papers
- Testing Quantum Gravity using Pulsed Optomechanical Systems [13.650870855008112]
We consider the Schr"odinger-Newton (SN) theory and the Correlated Worldline (CWL) theory, and show that they can be distinguished from conventional quantum mechanics.
We find that discriminating between the theories will be very difficult until experimental control over low frequency quantum optomechanical systems is pushed further.
arXiv Detail & Related papers (2023-11-03T17:06:57Z) - Quantumness near a Schwarzschild black hole [0.0]
We study the quantumness near a Schwarzschild black hole in a practical model under decoherence.
We explore the impacts of Hawking radiation and decoherence on the system under investigation.
arXiv Detail & Related papers (2023-10-24T09:38:41Z) - Detecting Gravitationally Interacting Dark Matter with Quantum Interference [47.03992469282679]
We show that there is a theoretical possibility to directly detect such particles using highly sensitive gravity-mediated quantum phase shifts.
In particular, we consider a protocol utilizing Josephson junctions.
arXiv Detail & Related papers (2023-09-15T08:22:46Z) - Signatures of discretization in quantum black hole spectra [0.0]
We analyze the effects produced by a black hole in a superposition of masses.
We infer signatures of discretization of the black hole mass in support of Bekenstein's conjecture.
arXiv Detail & Related papers (2023-04-02T01:10:19Z) - Unpacking Black Hole Complementarity [0.0]
I explain how black hole complementarity provides a framework to articulate how quantum characterizations of black holes can remain consistent despite the information paradox.
I point out that there are two ways to cash out the notion of consistency in play here: an operational notion and a descriptive notion.
arXiv Detail & Related papers (2022-10-28T21:13:29Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Equivalence principle and HBAR entropy of an atom falling into a quantum
corrected black hole [0.29998889086656577]
We investigate the phenomenon of acceleration radiation exhibited by an atom falling into a quantum corrected Schwarzschild black hole.
We calculate the horizon brightened acceleration radiation entropy for this quantum corrected black hole geometry.
arXiv Detail & Related papers (2022-02-01T02:44:51Z) - Quantum simulation of Hawking radiation and curved spacetime with a
superconducting on-chip black hole [18.605453401936643]
We report a fermionic lattice-model-type realization of an analogue black hole by using a chain of 10 superconducting transmon qubits with interactions mediated by 9 transmon-type tunable couplers.
The quantum walks of quasi-particle in the curved spacetime reflect the gravitational effect near the black hole, resulting in the behaviour of stimulated Hawking radiation.
arXiv Detail & Related papers (2021-11-22T10:17:23Z) - Quantum indistinguishability through exchangeable desirable gambles [69.62715388742298]
Two particles are identical if all their intrinsic properties, such as spin and charge, are the same.
Quantum mechanics is seen as a normative and algorithmic theory guiding an agent to assess her subjective beliefs represented as (coherent) sets of gambles.
We show how sets of exchangeable observables (gambles) may be updated after a measurement and discuss the issue of defining entanglement for indistinguishable particle systems.
arXiv Detail & Related papers (2021-05-10T13:11:59Z) - The Time-Evolution of States in Quantum Mechanics [77.34726150561087]
It is argued that the Schr"odinger equation does not yield a correct description of the quantum-mechanical time evolution of states of isolated (open) systems featuring events.
A precise general law for the time evolution of states replacing the Schr"odinger equation is formulated within the so-called ETH-Approach to Quantum Mechanics.
arXiv Detail & Related papers (2021-01-04T16:09:10Z) - Black-to-White Hole Scenario: Foundation and Evaporation [0.0]
A theory of quantum gravity is expected to change profoundly our understanding of black holes.
We study the foundations of such a scenario and propose a mathematical model that includes the phenomenon of evaporation.
arXiv Detail & Related papers (2020-09-03T16:51:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.