Strategies for implementing quantum error correction in molecular rotation
- URL: http://arxiv.org/abs/2405.02236v1
- Date: Fri, 3 May 2024 16:45:27 GMT
- Title: Strategies for implementing quantum error correction in molecular rotation
- Authors: Brandon J. Furey, Zhenlin Wu, Mariano Isaza-Monsalve, Stefan Walser, Elyas Mattivi, René Nardi, Philipp Schindler,
- Abstract summary: rotation of trapped molecules offers a promising platform for quantum technologies and quantum information processing.
In parallel, quantum error correction codes that can protect quantum information encoded in rotational states of a single molecule have been developed.
Here, we present a step towards experimental implementation of these codes by introducing architecture-agnostic check and correction operators.
- Score: 0.8783206109143172
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rotation of trapped molecules offers a promising platform for quantum technologies and quantum information processing. In parallel, quantum error correction codes that can protect quantum information encoded in rotational states of a single molecule have been developed. These codes are currently an abstract concept, as no implementation strategy is yet known. Here, we present a step towards experimental implementation of these codes by introducing architecture-agnostic check and correction operators. These operators can be decomposed into elements of the quantum logic spectroscopy toolbox that is available for molecular ions. We then describe and analyze a measurement-based sequential as well as an autonomous implementation strategy in the presence of thermal background radiation, a major noise source for rotation in polar molecules. The presented strategies and methods might enable robust sensing or even fault-tolerant quantum computing using the rotation of individual molecules.
Related papers
- Quantum Information Processing with Molecular Nanomagnets: an introduction [49.89725935672549]
We provide an introduction to Quantum Information Processing, focusing on a promising setup for its implementation.
We introduce the basic tools to understand and design quantum algorithms, always referring to their actual realization on a molecular spin architecture.
We present some examples of quantum algorithms proposed and implemented on a molecular spin qudit hardware.
arXiv Detail & Related papers (2024-05-31T16:43:20Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - All-optical Quantum State Engineering for Rotation-symmetric Bosonic
States [0.0]
We propose and analyze a method to generate a variety of non-Gaussian states using coherent photon subtraction.
Our method can be readily implemented with current quantum photonic technologies.
arXiv Detail & Related papers (2021-05-23T22:43:23Z) - A perspective on scaling up quantum computation with molecular spins [0.0]
Chemical design allows embedding nontrivial quantum functionalities in each molecular unit.
We discuss how to achieve this goal by the coupling to on-chip superconducting resonators.
arXiv Detail & Related papers (2021-05-03T07:11:36Z) - Counteracting dephasing in Molecular Nanomagnets by optimized qudit
encodings [60.1389381016626]
Molecular Nanomagnets may enable the implementation of qudit-based quantum error-correction codes.
A microscopic understanding of the errors corrupting the quantum information encoded in a molecular qudit is essential.
arXiv Detail & Related papers (2021-03-16T19:21:42Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z) - Computation of molecular excited states on IBM quantum computers using a
discriminative variational quantum eigensolver [0.965964228590342]
We propose a variational quantum machine learning based method to determine molecular excited states.
Our method uses a combination of two parametrized quantum circuits, working in tandem, combined with a Variational Quantum Eigensolver (VQE) to iteratively find the eigenstates of a molecular Hamiltonian.
arXiv Detail & Related papers (2020-01-14T17:56:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.