論文の概要: Inserting Faces inside Captions: Image Captioning with Attention Guided Merging
- arxiv url: http://arxiv.org/abs/2405.02305v1
- Date: Wed, 20 Mar 2024 08:38:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 10:40:42.746092
- Title: Inserting Faces inside Captions: Image Captioning with Attention Guided Merging
- Title(参考訳): キャプション内の顔の挿入:注意誘導マージによる画像キャプション
- Authors: Yannis Tevissen, Khalil Guetari, Marine Tassel, Erwan Kerleroux, Frédéric Petitpont,
- Abstract要約: 画像キャプションタスク用のデータセットであるAstroCaptionsを紹介する。
キャプション内に識別された人物の名前を挿入するための新しいポストプロセッシング手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image captioning models are widely used to describe recent and archived pictures with the objective of improving their accessibility and retrieval. Yet, these approaches tend to be inefficient and biased at retrieving people's names. In this work we introduce AstroCaptions, a dataset for the image captioning task. This dataset specifically contains thousands of public fig-ures that are complex to identify for a traditional model. We also propose a novel post-processing method to insert identified people's names inside the caption using explainable AI tools and the grounding capabilities of vi-sion-language models. The results obtained with this method show signifi-cant improvements of captions quality and a potential of reducing halluci-nations. Up to 93.2% of the persons detected can be inserted in the image captions leading to improvements in the BLEU, ROUGE, CIDEr and METEOR scores of each captioning model.
- Abstract(参考訳): 画像キャプションモデルは、アクセシビリティと検索の改善を目的として、最近の画像やアーカイブ画像を記述するために広く利用されている。
しかし、これらのアプローチは効率が悪く、人の名前を取得することに偏っている傾向があります。
この作業では、イメージキャプションタスク用のデータセットであるAstroCaptionsを紹介します。
このデータセットには、従来のモデルで識別するのに複雑である何千ものパブリックなフィギュアが含まれている。
また,説明可能なAIツールを用いてキャプション内に識別された人物名を挿入する新しいポストプロセッシング手法を提案する。
本法により得られた結果は,字幕品質のシグニフィカント改善と幻覚の軽減の可能性を示した。
検出された人の最大93.2%が画像キャプションに挿入され、BLEU、ROUGE、CIDEr、METEORの各キャプションモデルのスコアが改善された。
関連論文リスト
- Towards Retrieval-Augmented Architectures for Image Captioning [81.11529834508424]
本研究は,外部kNNメモリを用いた画像キャプションモデルの構築に向けた新しい手法を提案する。
具体的には、視覚的類似性に基づく知識検索コンポーネントを組み込んだ2つのモデル変種を提案する。
我々はCOCOデータセットとnocapsデータセットに対する我々のアプローチを実験的に検証し、明示的な外部メモリを組み込むことでキャプションの品質を著しく向上させることができることを示した。
論文 参考訳(メタデータ) (2024-05-21T18:02:07Z) - Visually-Aware Context Modeling for News Image Captioning [54.31708859631821]
News Image Captioningは、ニュース記事や画像からキャプションを作成することを目的としている。
より優れた名前埋め込みを学習するための顔命名モジュールを提案する。
私たちはCLIPを使用して、画像にセマンティックに近い文を検索します。
論文 参考訳(メタデータ) (2023-08-16T12:39:39Z) - Improving Image Captioning Descriptiveness by Ranking and LLM-based
Fusion [17.99150939602917]
State-of-The-Art (SoTA)イメージキャプションモデルは、トレーニングのためにMicrosoft COCO(MS-COCO)データセットに依存することが多い。
本稿では,異なるSoTAモデルから生成されたキャプションを効果的に融合させる方法を示すことによって,従来の課題に対処する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-06-20T15:13:02Z) - FuseCap: Leveraging Large Language Models for Enriched Fused Image
Captions [11.274127953112574]
本稿では,「凍った」視覚専門家を用いて,既存のキャプションを視覚的詳細で拡張するための自動アプローチを提案する。
提案手法であるFuseCapは,そのような視覚専門家の出力を,大規模言語モデルを用いて原文のキャプションと融合する。
私たちはこの大規模な画像キャプチャーペアのデータセットをコミュニティ向けにリリースします。
論文 参考訳(メタデータ) (2023-05-28T13:16:03Z) - Cross-Domain Image Captioning with Discriminative Finetuning [20.585138136033905]
自己監督的な識別的コミュニケーションの目的を持ったアウト・オブ・ザ・ボックスのニューラルキャプタを微調整することは、プレーンで視覚的に記述された言語を回復するのに役立ちます。
画像識別タスクを担っているヒトのアノテータに対して,Vanilla ClipCapのキャプションや接地木キャプションよりも,識別的に微調整されたキャプションの方が有用であることを示す。
論文 参考訳(メタデータ) (2023-04-04T09:33:16Z) - Partially-supervised novel object captioning leveraging context from
paired data [11.215352918313577]
既存の画像キャプチャー・ペアからコンテキストを活用することで、新しいオブジェクトに対する合成ペアキャプションデータを作成する。
さらに、これらの部分的なペアイメージを新しいオブジェクトと再使用し、擬似ラベルキャプションを作成します。
提案手法は,MS COCOの領域外テスト分割における最先端結果を実現する。
論文 参考訳(メタデータ) (2021-09-10T21:31:42Z) - Intrinsic Image Captioning Evaluation [53.51379676690971]
I2CE(Intrinsic Image Captioning Evaluation)と呼ばれる画像キャプションのための学習ベースメトリクスを提案する。
実験の結果,提案手法は頑健な性能を維持し,意味的類似表現やアライメントの少ない意味論に遭遇した場合,候補キャプションに対してより柔軟なスコアを与えることができた。
論文 参考訳(メタデータ) (2020-12-14T08:36:05Z) - VIVO: Visual Vocabulary Pre-Training for Novel Object Captioning [128.6138588412508]
本稿では,字幕アノテーションがない場合に事前学習を行うVIVO(Visual VOcabulary Pretraining)を提案する。
本モデルでは,新しいオブジェクトを記述した画像キャプションを生成するだけでなく,それらのオブジェクトの位置を識別する。
論文 参考訳(メタデータ) (2020-09-28T23:20:02Z) - Egoshots, an ego-vision life-logging dataset and semantic fidelity
metric to evaluate diversity in image captioning models [63.11766263832545]
我々は,字幕のない実生活画像978枚からなる新しい画像キャプションデータセット,Egoshotsを提案する。
生成されたキャプションの品質を評価するために,新しい画像キャプション指標,オブジェクトベースセマンティックフィデリティ(SF)を提案する。
論文 参考訳(メタデータ) (2020-03-26T04:43:30Z) - Better Captioning with Sequence-Level Exploration [60.57850194028581]
課題の字幕化における現在のシーケンスレベルの学習目標の限界を示す。
理論的には、現在の目的はキャプションセットの精度側だけを最適化することである。
実証的な結果は、この目的によって訓練されたモデルは、リコール側で低いスコアを得る傾向があることを示している。
論文 参考訳(メタデータ) (2020-03-08T09:08:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。