論文の概要: Efficient Exploration of Image Classifier Failures with Bayesian Optimization and Text-to-Image Models
- arxiv url: http://arxiv.org/abs/2405.02332v1
- Date: Fri, 26 Apr 2024 06:22:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-12 15:50:33.703214
- Title: Efficient Exploration of Image Classifier Failures with Bayesian Optimization and Text-to-Image Models
- Title(参考訳): ベイズ最適化とテキスト・ツー・イメージモデルを用いた画像分類器故障の効率的な探索
- Authors: Adrien Le Coz, Houssem Ouertatani, Stéphane Herbin, Faouzi Adjed,
- Abstract要約: 検証セットで評価されたパフォーマンスは、実世界でのパフォーマンスを反映しないかもしれない。
テキストから画像への生成モデルの最近の進歩は、コンピュータビジョンモデルのベンチマークに有用である。
- 参考スコア(独自算出の注目度): 4.59357989139429
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image classifiers should be used with caution in the real world. Performance evaluated on a validation set may not reflect performance in the real world. In particular, classifiers may perform well for conditions that are frequently encountered during training, but poorly for other infrequent conditions. In this study, we hypothesize that recent advances in text-to-image generative models make them valuable for benchmarking computer vision models such as image classifiers: they can generate images conditioned by textual prompts that cause classifier failures, allowing failure conditions to be described with textual attributes. However, their generation cost becomes an issue when a large number of synthetic images need to be generated, which is the case when many different attribute combinations need to be tested. We propose an image classifier benchmarking method as an iterative process that alternates image generation, classifier evaluation, and attribute selection. This method efficiently explores the attributes that ultimately lead to poor behavior detection.
- Abstract(参考訳): 画像分類器は、現実世界で慎重に使用するべきである。
検証セットで評価されたパフォーマンスは、実世界でのパフォーマンスを反映しないかもしれない。
特に、分類器は訓練中に頻繁に遭遇するが、他の稀な条件ではうまく機能しない。
本研究では,画像分類器などのコンピュータビジョンモデルのベンチマークにおいて,テキスト・ツー・イメージ生成モデルの最近の進歩が有用である,という仮説を立てる。
しかし、それらの生成コストは、多数の合成画像を生成する必要がある場合に問題となり、これは多くの異なる属性の組み合わせをテストする必要がある場合である。
本稿では,画像生成,分類器評価,属性選択を交互に行う反復的手法として,画像分類器ベンチマーク手法を提案する。
この方法は、最終的に振る舞いの検出が不十分になる特性を効率的に探索する。
関連論文リスト
- Regeneration Based Training-free Attribution of Fake Images Generated by
Text-to-Image Generative Models [39.33821502730661]
そこで本研究では,テキスト・ツー・イメージ・モデルによって生成された偽画像をソース・モデルに属性付けするためのトレーニング不要な手法を提案する。
テスト画像と候補画像の類似性を計算し、ランキングすることにより、画像のソースを決定することができる。
論文 参考訳(メタデータ) (2024-03-03T11:55:49Z) - Benchmark Generation Framework with Customizable Distortions for Image
Classifier Robustness [4.339574774938128]
本稿では,画像分類モデルのロバスト性を評価するために,逆ベンチマークを生成する新しいフレームワークを提案する。
当社のフレームワークでは,画像に最適な歪みの種類をカスタマイズすることが可能で,デプロイメントに関連する歪みに対処する上で有効である。
論文 参考訳(メタデータ) (2023-10-28T07:40:42Z) - GenEval: An Object-Focused Framework for Evaluating Text-to-Image
Alignment [26.785655363790312]
我々は、合成画像特性を評価するためのオブジェクト中心のフレームワークGenEvalを紹介する。
そこで本研究では,現在のオブジェクト検出モデルを用いてテキスト・ツー・イメージ・モデルの評価を行う。
次に、複数のオープンソーステキスト・ツー・イメージモデルを評価し、それらの相対的生成能力を解析する。
論文 参考訳(メタデータ) (2023-10-17T18:20:03Z) - Discriminative Class Tokens for Text-to-Image Diffusion Models [107.98436819341592]
自由形式のテキストの表現可能性を利用した非侵襲的な微調整手法を提案する。
本手法は,従来の微調整法と比較して高速で,クラス内の画像の収集を必要としない。
i)標準拡散モデルよりも正確で高品質な生成画像,(ii)低リソース環境でのトレーニングデータの拡張,および(iii)誘導分類器の訓練に使用されるデータ情報を明らかにする。
論文 参考訳(メタデータ) (2023-03-30T05:25:20Z) - Zero-shot Model Diagnosis [80.36063332820568]
ディープラーニングモデルを評価するための一般的なアプローチは、興味のある属性を持つラベル付きテストセットを構築し、そのパフォーマンスを評価することである。
本稿では,ゼロショットモデル診断(ZOOM)がテストセットやラベル付けを必要とせずに可能であることを論じる。
論文 参考訳(メタデータ) (2023-03-27T17:59:33Z) - Traditional Classification Neural Networks are Good Generators: They are
Competitive with DDPMs and GANs [104.72108627191041]
従来のニューラルネットワーク分類器は、最先端の生成モデルに匹敵する高品質な画像を生成することができることを示す。
マスクをベースとした再構成モジュールを提案し, 意味的勾配を意識し, 可視画像の合成を行う。
また,本手法は,画像テキスト基盤モデルに関して,テキスト・画像生成にも適用可能であることを示す。
論文 参考訳(メタデータ) (2022-11-27T11:25:35Z) - Explaining Image Classifiers Using Contrastive Counterfactuals in
Generative Latent Spaces [12.514483749037998]
本稿では,画像分類器の因果的かつ解釈可能な反事実的説明を生成する新しい手法を提案する。
我々は、ブラックボックス分類器のグローバルな説明として、コントラスト的かつ因果的満足度と必要性スコアを得るために、このフレームワークを使用します。
論文 参考訳(メタデータ) (2022-06-10T17:54:46Z) - Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [72.60554897161948]
最近のテキストと画像のマッチングモデルは、未修正画像と文の大きなコーパスに対してコントラスト学習を適用している。
本研究では、そのようなモデルを用いて、推論時に画像が与えられた記述テキストを生成する。
結果として得られたキャプションは、教師付きキャプション法によるキャプションよりもはるかに制限を受けない。
論文 参考訳(メタデータ) (2021-11-29T11:01:49Z) - Ensembling with Deep Generative Views [72.70801582346344]
生成モデルは、色やポーズの変化などの現実世界の変動を模倣する人工画像の「ビュー」を合成することができる。
そこで本研究では, 画像分類などの下流解析作業において, 実画像に適用できるかどうかを検討する。
StyleGAN2を再生増強の源として使用し、顔の属性、猫の顔、車を含む分類タスクについてこの設定を調査します。
論文 参考訳(メタデータ) (2021-04-29T17:58:35Z) - I Am Going MAD: Maximum Discrepancy Competition for Comparing
Classifiers Adaptively [135.7695909882746]
我々は、MAD(Maximum Discrepancy)コンペティションを命名する。
任意に大きいラベル付き画像のコーパスから小さなテストセットを適応的にサンプリングする。
結果のモデル依存画像集合に人間のラベルを付けると、競合する分類器の相対的な性能が明らかになる。
論文 参考訳(メタデータ) (2020-02-25T03:32:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。