Triadic-OCD: Asynchronous Online Change Detection with Provable Robustness, Optimality, and Convergence
- URL: http://arxiv.org/abs/2405.02372v2
- Date: Tue, 4 Jun 2024 11:40:50 GMT
- Title: Triadic-OCD: Asynchronous Online Change Detection with Provable Robustness, Optimality, and Convergence
- Authors: Yancheng Huang, Kai Yang, Zelin Zhu, Leian Chen,
- Abstract summary: This paper develops a triadic-OCD framework with certifiable robustness, provable optimality, and guaranteed convergence.
The proposed algorithm can be realized in a fully asynchronous distributed manner, easing the necessity of transmitting the data to a single server.
The non-asymptotic convergence property of Triadic-OCD is theoretically analyzed, and its complexity to achieve an $epsilon$-optimal point is derived.
- Score: 2.1348070823841363
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The primary goal of online change detection (OCD) is to promptly identify changes in the data stream. OCD problem find a wide variety of applications in diverse areas, e.g., security detection in smart grids and intrusion detection in communication networks. Prior research usually assumes precise knowledge of the system parameters. Nevertheless, this presumption often proves unattainable in practical scenarios due to factors such as estimation errors, system updates, etc. This paper aims to take the first attempt to develop a triadic-OCD framework with certifiable robustness, provable optimality, and guaranteed convergence. In addition, the proposed triadic-OCD algorithm can be realized in a fully asynchronous distributed manner, easing the necessity of transmitting the data to a single server. This asynchronous mechanism could also mitigate the straggler issue that faced by traditional synchronous algorithm. Moreover, the non-asymptotic convergence property of Triadic-OCD is theoretically analyzed, and its iteration complexity to achieve an $\epsilon$-optimal point is derived. Extensive experiments have been conducted to elucidate the effectiveness of the proposed method.
Related papers
- Semi-supervised Anomaly Detection via Adaptive Reinforcement Learning-Enabled Method with Causal Inference for Sensor Signals [15.249261198557218]
Semi-supervised anomaly detection for sensor signals is critical in ensuring system reliability in smart manufacturing.
This paper innovatively constructs a counterfactual causal reinforcement learning model, termed Triple-Assisted Causal Reinforcement Learning Anomaly Detector (Tri-CRLAD)
Experimental results across seven diverse sensor signal datasets demonstrate that Tri-CRLAD outperforms nine state-of-the-art baseline methods.
arXiv Detail & Related papers (2024-05-11T06:10:05Z) - Interacting Particle Systems on Networks: joint inference of the network
and the interaction kernel [8.535430501710712]
We infer the weight matrix of the network and systems which determine the rules of the interactions between agents.
We use two algorithms: one is on a new algorithm named operator regression with alternating least squares of data.
Both algorithms are scalable conditions guaranteeing identifiability and well-posedness.
arXiv Detail & Related papers (2024-02-13T12:29:38Z) - Unraveling the "Anomaly" in Time Series Anomaly Detection: A
Self-supervised Tri-domain Solution [89.16750999704969]
Anomaly labels hinder traditional supervised models in time series anomaly detection.
Various SOTA deep learning techniques, such as self-supervised learning, have been introduced to tackle this issue.
We propose a novel self-supervised learning based Tri-domain Anomaly Detector (TriAD)
arXiv Detail & Related papers (2023-11-19T05:37:18Z) - Federated Distributionally Robust Optimization with Non-Convex
Objectives: Algorithm and Analysis [24.64654924173679]
Asynchronous distributed algorithm named Asynchronous Single-looP alternatIve gRadient projEction is proposed.
New uncertainty set, i.e., constrained D-norm uncertainty set, is developed to leverage the prior distribution and flexibly control the degree of robustness.
empirical studies on real-world datasets demonstrate that the proposed method can not only achieve fast convergence, but also remain robust against data as well as malicious attacks.
arXiv Detail & Related papers (2023-07-25T01:56:57Z) - Networked Communication for Decentralised Agents in Mean-Field Games [59.01527054553122]
We introduce networked communication to the mean-field game framework.
We prove that our architecture has sample guarantees bounded between those of the centralised- and independent-learning cases.
arXiv Detail & Related papers (2023-06-05T10:45:39Z) - Distributed Distributionally Robust Optimization with Non-Convex
Objectives [24.64654924173679]
Asynchronous distributed algorithm named Asynchronous Single-looP alternatIve gRadient projEction is proposed.
New uncertainty set, i.e., constrained D-norm uncertainty set, is developed to leverage the prior distribution and flexibly control the degree of robustness.
empirical studies on real-world datasets demonstrate that the proposed method can not only achieve fast convergence, but also remain robust against data as well as malicious attacks.
arXiv Detail & Related papers (2022-10-14T07:39:13Z) - Multi-Perspective Content Delivery Networks Security Framework Using
Optimized Unsupervised Anomaly Detection [9.102485917295587]
We propose a multi-perspective unsupervised learning framework for anomaly detection in CDNs.
In the proposed framework, a multi-perspective feature engineering approach, an optimized unsupervised anomaly detection model, and a multi-perspective validation method, are developed.
Experimental results are presented based on the analytics of eight days of real-world CDN log data provided by a major CDN operator.
arXiv Detail & Related papers (2021-07-24T02:43:23Z) - Uncertainty-Aware Deep Calibrated Salient Object Detection [74.58153220370527]
Existing deep neural network based salient object detection (SOD) methods mainly focus on pursuing high network accuracy.
These methods overlook the gap between network accuracy and prediction confidence, known as the confidence uncalibration problem.
We introduce an uncertaintyaware deep SOD network, and propose two strategies to prevent deep SOD networks from being overconfident.
arXiv Detail & Related papers (2020-12-10T23:28:36Z) - ESAD: End-to-end Deep Semi-supervised Anomaly Detection [85.81138474858197]
We propose a new objective function that measures the KL-divergence between normal and anomalous data.
The proposed method significantly outperforms several state-of-the-arts on multiple benchmark datasets.
arXiv Detail & Related papers (2020-12-09T08:16:35Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - A Unified Theory of Decentralized SGD with Changing Topology and Local
Updates [70.9701218475002]
We introduce a unified convergence analysis of decentralized communication methods.
We derive universal convergence rates for several applications.
Our proofs rely on weak assumptions.
arXiv Detail & Related papers (2020-03-23T17:49:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.