Analysis of Asynchronous Protocols for Entanglement Distribution in Quantum Networks
- URL: http://arxiv.org/abs/2405.02406v2
- Date: Sun, 2 Jun 2024 02:08:02 GMT
- Title: Analysis of Asynchronous Protocols for Entanglement Distribution in Quantum Networks
- Authors: Shahrooz Pouryousef, Hassan Shapourian, Don Towsley,
- Abstract summary: We explore two minimal asynchronous protocols for entanglement in quantum networks.
A parallel scheme generating entanglement independently at the link level, and a sequential scheme extending entanglement iteratively from one party to the other.
Our findings suggest the sequential scheme's superiority due to comparable performance with the parallel scheme, coupled with simpler implementation.
- Score: 9.971549076128268
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The distribution of entanglement in quantum networks is typically approached under idealized assumptions such as perfect synchronization and centralized control, while classical communication is often neglected. However, these assumptions prove impractical in large-scale networks. In this paper, we present a pragmatic perspective by exploring two minimal asynchronous protocols: a parallel scheme generating entanglement independently at the link level, and a sequential scheme extending entanglement iteratively from one party to the other. Our analysis incorporates non-uniform repeater spacings and classical communications and accounts for quantum memory decoherence. We evaluate network performance using metrics such as entanglement bit rate, end-to-end fidelity, and secret key rate for entanglement-based quantum key distribution. Our findings suggest the sequential scheme's superiority due to comparable performance with the parallel scheme, coupled with simpler implementation. Additionally, we impose a cutoff strategy to improve performance by discarding attempts with prolonged memory idle time, effectively eliminating low-quality entanglement links. Finally, we apply our methods to the real-world topology of SURFnet and report the performance as a function of memory coherence time.
Related papers
- Optimized Generation of Entanglement by Real-Time Ordering of Swapping Operations [4.152766500389854]
Long-distance quantum communication in quantum networks faces significant challenges due to the constraints imposed by the no-cloning theorem.
Most existing quantum communication protocols rely on the a priori distribution of entanglement pairs (EPs)
We present a greedy algorithm that iteratively determines the best route and/or entanglement-swapping operation to perform at each stage based on the current network.
arXiv Detail & Related papers (2024-05-13T06:43:11Z) - Optimistic Entanglement Purification in Quantum Networks [11.511763058777259]
Noise and photon loss encountered on quantum channels pose a major challenge for reliable entanglement generation in quantum networks.
In near-term networks, heralding is required to inform endpoints of successfully generated entanglement.
We apply optimism to the entanglement pumping scheme, ground- and satellite-based EPR generation sources, and current state-of-the-art purification circuits.
arXiv Detail & Related papers (2024-01-16T01:08:17Z) - Asynchronous Entanglement Routing for the Quantum Internet [0.42855555838080833]
We propose a new set of asynchronous routing protocols for quantum networks.
The protocols update the entanglement-link asynchronous topologyly, identify optimal entanglement-swapping paths, and preserve unused direct-link entanglements.
Our results indicate that asynchronous protocols achieve a larger upper bound with an appropriate setting and significantly higher entanglement rate than existing synchronous approaches.
arXiv Detail & Related papers (2023-12-21T21:14:21Z) - Entanglement Distribution in Quantum Repeater with Purification and
Optimized Buffer Time [53.56179714852967]
We explore entanglement distribution using quantum repeaters with optimized buffer time.
We observe that increasing the number of memories on end nodes leads to a higher entanglement distribution rate per memory.
When imperfect operations are considered, however, we make the surprising observation that the per-memory entanglement rate decreases with increasing number of memories.
arXiv Detail & Related papers (2023-05-23T23:23:34Z) - Entangled Pair Resource Allocation under Uncertain Fidelity Requirements [59.83361663430336]
In quantum networks, effective entanglement routing facilitates communication between quantum source and quantum destination nodes.
We propose a resource allocation model for entangled pairs and an entanglement routing model with a fidelity guarantee.
Our proposed model can reduce the total cost by at least 20% compared to the baseline model.
arXiv Detail & Related papers (2023-04-10T07:16:51Z) - Binarizing Sparse Convolutional Networks for Efficient Point Cloud
Analysis [93.55896765176414]
We propose binary sparse convolutional networks called BSC-Net for efficient point cloud analysis.
We employ the differentiable search strategies to discover the optimal opsitions for active site matching in the shifted sparse convolution.
Our BSC-Net achieves significant improvement upon our srtong baseline and outperforms the state-of-the-art network binarization methods.
arXiv Detail & Related papers (2023-03-27T13:47:06Z) - Multi-User Entanglement Distribution in Quantum Networks Using Multipath
Routing [55.2480439325792]
We propose three protocols that increase the entanglement rate of multi-user applications by leveraging multipath routing.
The protocols are evaluated on quantum networks with NISQ constraints, including limited quantum memories and probabilistic entanglement generation.
arXiv Detail & Related papers (2023-03-06T18:06:00Z) - Deterministic Entanglement Transmission on Series-Parallel Quantum
Networks [2.86989372262348]
This paper explores and amplifies a new and more effective mapping of QN, referred to as concurrence percolation theory (ConPT)
We implement ConPT via a novel deterministic entanglement transmission scheme that is fully analogous to resistor network analysis.
The DET is designed for general d-dimensional information carriers, scalable and adaptable for any series-parallel QN, and experimentally feasible as tested on IBM's quantum platform.
arXiv Detail & Related papers (2021-10-11T03:29:03Z) - Quantum communication complexity beyond Bell nonlocality [87.70068711362255]
Efficient distributed computing offers a scalable strategy for solving resource-demanding tasks.
Quantum resources are well-suited to this task, offering clear strategies that can outperform classical counterparts.
We prove that a new class of communication complexity tasks can be associated to Bell-like inequalities.
arXiv Detail & Related papers (2021-06-11T18:00:09Z) - Concurrence Percolation in Quantum Networks [3.52359746858894]
We introduce a new statistical theory, concurrence percolation theory (ConPT)
We find that the entanglement transmission threshold predicted by ConPT is lower than the known classical-percolation-based results.
ConPT also shows a percolation-like universal critical behavior derived by finite-size analysis on the Bethe lattice.
arXiv Detail & Related papers (2021-03-25T17:14:48Z) - Purification and Entanglement Routing on Quantum Networks [55.41644538483948]
A quantum network equipped with imperfect channel fidelities and limited memory storage time can distribute entanglement between users.
We introduce effectives enabling fast path-finding algorithms for maximizing entanglement shared between two nodes on a quantum network.
arXiv Detail & Related papers (2020-11-23T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.