論文の概要: ProFLingo: A Fingerprinting-based Intellectual Property Protection Scheme for Large Language Models
- arxiv url: http://arxiv.org/abs/2405.02466v2
- Date: Wed, 26 Jun 2024 16:22:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-27 18:35:32.245736
- Title: ProFLingo: A Fingerprinting-based Intellectual Property Protection Scheme for Large Language Models
- Title(参考訳): ProFLingo:大規模言語モデルのための指紋ベースの知的財産保護スキーム
- Authors: Heng Jin, Chaoyu Zhang, Shanghao Shi, Wenjing Lou, Y. Thomas Hou,
- Abstract要約: 大規模言語モデル(LLM)のためのブラックボックス指紋認証に基づくIP保護スキームProFLingoを提案する。
ProFLingoは、オリジナルのモデルから特定の応答を引き出すクエリを生成し、ユニークな指紋を確立する。
提案手法は,疑似モデルにおけるこれらのクエリの有効性を評価し,元のモデルから派生したものかどうかを判断する。
- 参考スコア(独自算出の注目度): 18.46904928949022
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have attracted significant attention in recent years. Due to their "Large" nature, training LLMs from scratch consumes immense computational resources. Since several major players in the artificial intelligence (AI) field have open-sourced their original LLMs, an increasing number of individual researchers and smaller companies are able to build derivative LLMs based on these open-sourced models at much lower costs. However, this practice opens up possibilities for unauthorized use or reproduction that may not comply with licensing agreements, and fine-tuning can change the model's behavior, thus complicating the determination of model ownership. Current intellectual property (IP) protection schemes for LLMs are either designed for white-box settings or require additional modifications to the original model, which restricts their use in real-world settings. In this paper, we propose ProFLingo, a black-box fingerprinting-based IP protection scheme for LLMs. ProFLingo generates queries that elicit specific responses from an original model, thereby establishing unique fingerprints. Our scheme assesses the effectiveness of these queries on a suspect model to determine whether it has been derived from the original model. ProFLingo offers a non-invasive approach, which neither requires knowledge of the suspect model nor modifications to the base model or its training process. To the best of our knowledge, our method represents the first black-box fingerprinting technique for IP protection for LLMs. Our source code and generated queries are available at: https://github.com/hengvt/ProFLingo.
- Abstract(参考訳): 近年,大規模言語モデル (LLM) が注目されている。
その「大きな」性質のため、スクラッチからLLMを訓練することは膨大な計算資源を消費する。
人工知能(AI)分野のいくつかの主要プレーヤーが独自のLLMをオープンソースにしているため、多くの個人研究者や小規模企業が、これらのオープンソースモデルに基づいて、はるかに低コストで派生LLMを構築できるようになっている。
しかし、この慣行は、ライセンス契約に従わない無許可の使用や再生の可能性を広げ、微調整はモデルの振る舞いを変え、モデルの所有権の決定を複雑にする。
LLMの現在の知的財産権(IP)保護スキームは、ホワイトボックスの設定のために設計されたか、または実際の設定での使用を制限するオリジナルのモデルに追加の修正を必要とする。
本稿では,LLMのためのブラックボックス指紋認証によるIP保護方式であるProFLingoを提案する。
ProFLingoは、オリジナルのモデルから特定の応答を引き出すクエリを生成し、ユニークな指紋を確立する。
提案手法は,疑似モデルにおけるこれらのクエリの有効性を評価し,元のモデルから派生したものかどうかを判断する。
ProFLingoは非侵襲的なアプローチを提供しており、疑似モデルに関する知識もベースモデルやトレーニングプロセスの変更も必要としない。
我々の知る限り、本手法はLSMのIP保護のための最初のブラックボックスフィンガープリント技術である。
ソースコードと生成されたクエリは、https://github.com/hengvt/ProFLingo.comで公開されています。
関連論文リスト
- REEF: Representation Encoding Fingerprints for Large Language Models [53.679712605506715]
REEFは、被疑者モデルと被害者モデルの表現との中心となるカーネルアライメントの類似性を計算し、比較する。
このトレーニング不要のREEFは、モデルの一般的な能力を損なうことなく、シーケンシャルな微調整、プルーニング、モデルマージ、置換に堅牢である。
論文 参考訳(メタデータ) (2024-10-18T08:27:02Z) - A Fingerprint for Large Language Models [10.63985246068255]
大規模言語モデル(LLM)のための新しいブラックボックスフィンガープリント手法を提案する。
実験結果から,提案手法はPEFT攻撃に対するオーナシップ検証とロバスト性において優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2024-07-01T12:25:42Z) - DALD: Improving Logits-based Detector without Logits from Black-box LLMs [56.234109491884126]
大規模言語モデル(LLM)はテキスト生成に革命をもたらし、人間の文章を忠実に模倣する出力を生成する。
我々は、ブラックボックステキスト検出における最先端性能を再定義する革新的なフレームワークであるDLD(Dis Distribution-Aligned LLMs Detection)を提案する。
DALDは、サロゲートモデルの分布を未知の目標LLMの分布と整合させ、高速モデルの反復に対する検出能力とレジリエンスを向上するように設計されている。
論文 参考訳(メタデータ) (2024-06-07T19:38:05Z) - MAP-Neo: Highly Capable and Transparent Bilingual Large Language Model Series [86.31735321970481]
私たちはMAP-Neoをオープンソースにしました。これは、4.5Tの高品質トークン上で、スクラッチからトレーニングされた7Bパラメータを持つバイリンガル言語モデルです。
MAP-Neo は,既存の最先端 LLM と比較して性能が劣る初の完全オープンソースバイリンガル LLM である。
論文 参考訳(メタデータ) (2024-05-29T17:57:16Z) - Instructional Fingerprinting of Large Language Models [57.72356846657551]
本稿では,非常に軽量なインストラクションチューニングの一形態として,Large Language Model (LLM) の指紋認証に関する実験的検討を行う。
11個の LLM 実験の結果,このアプローチは軽量であり,モデルの正常な挙動には影響しないことがわかった。
また、パブリッシャーの誇張を防ぎ、指紋の推測やパラメータ効率のトレーニングに対する堅牢性を維持し、MITライセンスのような多段階の指紋認証をサポートする。
論文 参考訳(メタデータ) (2024-01-21T09:51:45Z) - Knowledge Fusion of Large Language Models [73.28202188100646]
本稿では,大規模言語モデル(LLM)における知識融合の概念を紹介する。
我々は、それらの集合的知識と独特な強みを外部化し、それによってターゲットモデルの能力が、どのソースLLMよりも高められるようにします。
この結果から,LLMの融合により,推論やコモンセンス,コード生成など,対象モデルの性能が向上することが確認された。
論文 参考訳(メタデータ) (2024-01-19T05:02:46Z) - Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models [52.98743860365194]
本稿では,SPIN(Self-Play fIne-tuNing)と呼ばれるファインチューニング手法を提案する。
SPINの中心には自己再生機構があり、LLMは自身のインスタンスと対戦することでその能力を洗練させる。
このことは、自己プレイの約束に光を当て、熟練した相手を必要とせずに、LSMにおける人間レベルのパフォーマンスの達成を可能にする。
論文 参考訳(メタデータ) (2024-01-02T18:53:13Z) - HuRef: HUman-REadable Fingerprint for Large Language Models [44.9820558213721]
HuRefは、大きな言語モデルのための人間可読指紋である。
トレーニングやモデルパラメータを公開することなく、ベースモデルを独自に識別する。
論文 参考訳(メタデータ) (2023-12-08T05:01:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。