論文の概要: Prediction of Space Weather Events through Analysis of Active Region Magnetograms using Convolutional Neural Network
- arxiv url: http://arxiv.org/abs/2405.02545v1
- Date: Sat, 4 May 2024 03:04:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 19:30:33.347941
- Title: Prediction of Space Weather Events through Analysis of Active Region Magnetograms using Convolutional Neural Network
- Title(参考訳): 畳み込みニューラルネットワークを用いた活動領域磁図解析による宇宙気象事象の予測
- Authors: Shlesh Sakpal,
- Abstract要約: 宇宙の悪天候は大気の変化を引き起こし、地球規模で物理的、経済的に損傷を与える。
本研究の目的は、太陽の活動領域磁気図に基づく宇宙天気(太陽フレア、コロナ質量放出、地磁気嵐)の予測に機械学習技術を活用することである。
このデータセットからトレーニングされた畳み込みニューラルネットワーク(CNN)にマグネットグラムを入力することで、宇宙天気イベントが発生するかどうか、どのようなイベントが起こるかを予測することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although space weather events may not directly affect human life, they have the potential to inflict significant harm upon our communities. Harmful space weather events can trigger atmospheric changes that result in physical and economic damages on a global scale. In 1989, Earth experienced the effects of a powerful geomagnetic storm that caused satellites to malfunction, while triggering power blackouts in Canada, along with electricity disturbances in the United States and Europe. With the solar cycle peak rapidly approaching, there is an ever-increasing need to prepare and prevent the damages that can occur, especially to modern-day technology, calling for the need of a comprehensive prediction system. This study aims to leverage machine learning techniques to predict instances of space weather (solar flares, coronal mass ejections, geomagnetic storms), based on active region magnetograms of the Sun. This was done through the use of the NASA DONKI service to determine when these solar events occur, then using data from the NASA Solar Dynamics Observatory to compile a dataset that includes magnetograms of active regions of the Sun 24 hours before the events. By inputting the magnetograms into a convolutional neural network (CNN) trained from this dataset, it can serve to predict whether a space weather event will occur, and what type of event it will be. The model was designed using a custom architecture CNN, and returned an accuracy of 90.27%, a precision of 85.83%, a recall of 91.78%, and an average F1 score of 92.14% across each class (Solar flare [Flare], geomagnetic storm [GMS], coronal mass ejection [CME]). Our results show that using magnetogram data as an input for a CNN is a viable method to space weather prediction. Future work can involve prediction of the magnitude of solar events.
- Abstract(参考訳): 宇宙気象の出来事は人間の生活に直接影響を与えないかもしれないが、我々のコミュニティに大きな害を与える可能性がある。
宇宙の悪天候は大気の変化を引き起こし、地球規模で物理的、経済的に損傷を与える。
1989年、地球は強力な磁気嵐の影響を受け、衛星が故障し、カナダでは停電が発生し、アメリカ合衆国やヨーロッパの電気障害も発生した。
太陽周期のピークが急速に接近するにつれ、特に現代の技術に発生する損傷を準備し、予防する必要性が高まっており、包括的な予測システムの必要性が求められている。
本研究の目的は、太陽の活動領域磁気図に基づいて、宇宙天気(太陽フレア、コロナ質量放出、地磁気嵐)を予測するための機械学習技術を活用することである。
これは、NASAのDONKIサービスを使用して、これらの太陽イベントがいつ発生するかを判断し、NASAのソーラー・ダイナミクス・オブザーバからのデータを使用して、太陽の活動領域の磁気グラムを含むデータセットを24時間前にコンパイルすることで実現された。
このデータセットからトレーニングされた畳み込みニューラルネットワーク(CNN)にマグネットグラムを入力することで、宇宙天気イベントが発生するかどうか、どのようなイベントが起こるかを予測することができる。
モデルはカスタムアーキテクチャのCNNを用いて設計され、精度は90.27%、精度は85.83%、リコールは91.78%、F1スコアは92.14%であった(Solar flare(フレア)、地磁気嵐(GMS)、コロナ質量放出(CME))。
以上の結果から,CNNの入力としてマグネティックグラムデータを用いることは,宇宙天気予報に有効な方法であることが示唆された。
将来の研究は、太陽の事象の規模を予測することを含む。
関連論文リスト
- MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
気象予測において重要な課題であるダウンスケーリングは、ターゲット領域に対する高解像度気象状態の再構築を可能にする。
以前のダウンスケーリング手法には気象学のための調整された設計が欠けており、構造的な限界に遭遇した。
本稿では,多変数相関と地形情報の利用性を高める新しいモデルであるMambaDSを提案する。
論文 参考訳(メタデータ) (2024-08-20T13:45:49Z) - Extreme Solar Flare Prediction Using Residual Networks with HMI Magnetograms and Intensitygrams [0.0]
HMI強度図とマグネティックグラムを用いた極端太陽フレアの予測手法を提案する。
強度図から太陽点を検出し、磁気グラムから磁場パッチを抽出することにより、極度のクラスフレアを分類するためにResidual Network(ResNet)を訓練する。
我々のモデルは高精度で、極端太陽フレアを予測し、宇宙天気予報を改善するための堅牢なツールを提供する。
論文 参考訳(メタデータ) (2024-05-23T16:17:16Z) - A Foundation Model for the Earth System [82.73624748093333]
我々は、100万時間以上の多様なデータに基づいてトレーニングされた地球システムのための大規模な基盤モデルであるAuroraを紹介します。
オーロラは、大気の質、海波、熱帯のサイクロンの軌道、および専用システムよりも計算コストの桁違いの高解像度の天気予報において、運用上の予測を上回っている。
論文 参考訳(メタデータ) (2024-05-20T14:45:18Z) - Back to the Future: GNN-based NO$_2$ Forecasting via Future Covariates [49.93577170464313]
都市全域にわたる地上監視ネットワークにおける大気質観測について検討する。
我々は過去と将来の共変分を現在の観測に埋め込む条件付きブロックを提案する。
将来の気象情報に対する条件付けは,過去の交通状況を考えるよりも影響が大きいことが判明した。
論文 参考訳(メタデータ) (2024-04-08T09:13:16Z) - Forecasting SEP Events During Solar Cycles 23 and 24 Using Interpretable
Machine Learning [38.321248253111776]
我々は、新しいデータプロダクトの予測可能性を評価するために、一連の機械学習戦略を用いて、事後SEPイベントの予測を行う。
データ量の増大にもかかわらず、予測精度は 0.7 + 0.1 に達し、これはこれらのベンチマークに合致するが、公表されたベンチマークを超えない。
論文 参考訳(メタデータ) (2024-03-04T23:12:17Z) - Early Prediction of Geomagnetic Storms by Machine Learning Algorithms [0.0]
地磁気嵐 (GS) は、太陽風が地球の磁気圏を乱すときに起こる。
大規模GSによる直接的な経済影響の推定は、米国で1日当たり400億ドルを突破している。
この研究は、ビッグデータと機械学習アルゴリズムを使用して、あらゆるタイプのGSを可能な限り確実に予測することを目的としている。
論文 参考訳(メタデータ) (2024-01-17T05:17:40Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
我々は、再分析データから直接トレーニングできる「GraphCast」と呼ばれる機械学習ベースの手法を導入する。
全世界で10日以上、0.25度で、数百の気象変動を1分以内で予測する。
我々は,GraphCastが1380の検証対象の90%において,最も正確な運用決定システムよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-12-24T18:15:39Z) - Predicting the Geoeffectiveness of CMEs Using Machine Learning [0.0]
この研究は、ホワイトライトコロナグラフデータセットに基づいてトレーニングされたさまざまな機械学習手法の実験に焦点を当てている。
我々は、ロジスティック回帰、K-Nearest Neighbors、Support Vector Machines、フォワード人工ニューラルネットワーク、およびアンサンブルモデルを用いたバイナリ分類モデルを開発する。
このタスクの主な課題、すなわち、我々のデータセットにおけるジオエフェクトイベントの数と非エフェクトイベントの数の間の極端な不均衡について論じる。
論文 参考訳(メタデータ) (2022-06-23T03:56:22Z) - A Machine Learning and Computer Vision Approach to Geomagnetic Storm
Forecasting [2.0499240875882]
地磁気嵐は、太陽から放出される荷電粒子の質量によって引き起こされる地球の磁気圏の乱れである。
NOAAの現在の予測方法は、高価な太陽風探査機と世界規模の磁気センサネットワークに依存しているため限られている。
そこで我々は,このようなコストのかかる物理的測定を必要とせずに,地磁気嵐を正確に予測する,新しい機械学習とコンピュータビジョン手法を提案する。
論文 参考訳(メタデータ) (2022-04-04T15:38:33Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
変形可能な畳み込みニューラルネットワーク(deCNN)に基づく教師あり機械学習手法の検討
今後1~15日にわたって北大西洋-欧州の気象条件を予測した。
より広い視野で見れば、通常の畳み込みニューラルネットワークよりも5~6日を超えるリードタイムでかなり優れた性能を発揮することが分かる。
論文 参考訳(メタデータ) (2022-02-10T11:37:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。