論文の概要: Generic Multi-modal Representation Learning for Network Traffic Analysis
- arxiv url: http://arxiv.org/abs/2405.02649v1
- Date: Sat, 4 May 2024 12:24:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 19:01:15.159436
- Title: Generic Multi-modal Representation Learning for Network Traffic Analysis
- Title(参考訳): ネットワークトラフィック解析のための汎用マルチモーダル表現学習
- Authors: Luca Gioacchini, Idilio Drago, Marco Mellia, Zied Ben Houidi, Dario Rossi,
- Abstract要約: ネットワークトラフィック分析は、ネットワーク管理、トラブルシューティング、セキュリティに不可欠である。
異なるユースケースを解決できる柔軟なマルチモーダルオートエンコーダ(MAE)パイプラインを提案する。
我々は、MAEアーキテクチャは汎用的であり、複数のシナリオで有用な表現の学習に使用できると論じる。
- 参考スコア(独自算出の注目度): 6.372999570085887
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Network traffic analysis is fundamental for network management, troubleshooting, and security. Tasks such as traffic classification, anomaly detection, and novelty discovery are fundamental for extracting operational information from network data and measurements. We witness the shift from deep packet inspection and basic machine learning to Deep Learning (DL) approaches where researchers define and test a custom DL architecture designed for each specific problem. We here advocate the need for a general DL architecture flexible enough to solve different traffic analysis tasks. We test this idea by proposing a DL architecture based on generic data adaptation modules, followed by an integration module that summarises the extracted information into a compact and rich intermediate representation (i.e. embeddings). The result is a flexible Multi-modal Autoencoder (MAE) pipeline that can solve different use cases. We demonstrate the architecture with traffic classification (TC) tasks since they allow us to quantitatively compare results with state-of-the-art solutions. However, we argue that the MAE architecture is generic and can be used to learn representations useful in multiple scenarios. On TC, the MAE performs on par or better than alternatives while avoiding cumbersome feature engineering, thus streamlining the adoption of DL solutions for traffic analysis.
- Abstract(参考訳): ネットワークトラフィック分析は、ネットワーク管理、トラブルシューティング、セキュリティに不可欠である。
トラフィック分類、異常検出、新規発見などのタスクは、ネットワークデータや計測から運用情報を抽出する上で基本となる。
我々は、ディープパケット検査と基本的な機械学習から、研究者が特定の問題ごとに設計されたカスタムDLアーキテクチャを定義しテストするディープラーニング(DL)アプローチへの移行を目撃する。
ここでは、異なるトラフィック分析タスクを解くのに十分な柔軟性を持つ汎用DLアーキテクチャの必要性を提唱する。
本稿では、汎用データ適応モジュールに基づくDLアーキテクチャを提案し、次いで抽出した情報をコンパクトでリッチな中間表現(埋め込み)に要約する統合モジュールを提案する。
その結果、柔軟なマルチモーダルオートエンコーダ(MAE)パイプラインが実現し、さまざまなユースケースを解決できる。
このアーキテクチャを交通分類(TC)タスクで示すのは、その結果を最先端のソリューションと定量的に比較できるからである。
しかし、MAEアーキテクチャは汎用的であり、複数のシナリオで有用な表現の学習に使用できると論じる。
TCでは、MAEは、面倒な機能エンジニアリングを避けながら、代替よりも同等かそれ以上の性能を発揮し、トラフィック分析におけるDLソリューションの採用を合理化しています。
関連論文リスト
- Lens: A Foundation Model for Network Traffic [19.3652490585798]
Lensは、T5アーキテクチャを活用して、大規模な未ラベルデータから事前訓練された表現を学習するネットワークトラフィックの基礎モデルである。
Masked Span Prediction(MSP)、Packet Order Prediction(POP)、Homologous Traffic Prediction(HTP)の3つの異なるタスクを組み合わせた新しい損失を設計する。
論文 参考訳(メタデータ) (2024-02-06T02:45:13Z) - Modular Blended Attention Network for Video Question Answering [1.131316248570352]
本稿では,再利用可能で構成可能なニューラルユニットを用いた問題解決手法を提案する。
一般的に使用されている3つのデータセットについて実験を行った。
論文 参考訳(メタデータ) (2023-11-02T14:22:17Z) - Serving Deep Learning Model in Relational Databases [70.53282490832189]
リレーショナルデータ上での深層学習(DL)モデルの実現は、様々な商業分野や科学分野において重要な要件となっている。
最先端のDL中心アーキテクチャは、DL計算を専用のDLフレームワークにオフロードします。
UDF中心アーキテクチャの可能性は、リレーショナルデータベース管理システム(RDBMS)内の1つ以上のテンソル計算をユーザ定義関数(UDF)にカプセル化する。
論文 参考訳(メタデータ) (2023-10-07T06:01:35Z) - Building Interpretable and Reliable Open Information Retriever for New
Domains Overnight [67.03842581848299]
情報検索は、オープンドメイン質問応答(QA)など、多くのダウンストリームタスクにとって重要な要素である。
本稿では、エンティティ/イベントリンクモデルとクエリ分解モデルを用いて、クエリの異なる情報単位により正確にフォーカスする情報検索パイプラインを提案する。
より解釈可能で信頼性が高いが,提案したパイプラインは,5つのIRおよびQAベンチマークにおける通過カバレッジと記述精度を大幅に向上することを示す。
論文 参考訳(メタデータ) (2023-08-09T07:47:17Z) - PyRCA: A Library for Metric-based Root Cause Analysis [66.72542200701807]
PyRCAは、AIOps(AIOps)のためのRoot Cause Analysis(RCA)のオープンソースの機械学習ライブラリである。
複雑なメトリクス因果依存性を明らかにし、インシデントの根本原因を自動的に特定する、包括的なフレームワークを提供する。
論文 参考訳(メタデータ) (2023-06-20T09:55:10Z) - Many or Few Samples? Comparing Transfer, Contrastive and Meta-Learning
in Encrypted Traffic Classification [68.19713459228369]
我々は、トランスファーラーニング、メタラーニング、コントラストラーニングを、参照機械学習(ML)ツリーベースおよびモノリシックDLモデルと比較する。
i) 大規模なデータセットを用いて,より一般的な表現を得られること,(ii) コントラスト学習が最良の手法であることを示している。
MLツリーベースでは大きなタスクは処理できないが、学習した表現を再利用することで、小さなタスクにも適合するが、DLメソッドはツリーベースモデルのパフォーマンスにも到達している。
論文 参考訳(メタデータ) (2023-05-21T11:20:49Z) - Deep Learning Serves Traffic Safety Analysis: A Forward-looking Review [4.228522109021283]
本稿では,トラヒックビデオの理解と解釈に使用できる,典型的な処理パイプラインを提案する。
この処理フレームワークは、ビデオ強調、ビデオ安定化、セマンティックおよびインシデントセグメンテーション、オブジェクト検出と分類、軌道抽出、速度推定、イベント分析、モデリング、異常検出を含む。
論文 参考訳(メタデータ) (2022-03-07T17:21:07Z) - Mapping the Internet: Modelling Entity Interactions in Complex
Heterogeneous Networks [0.0]
サンプル表現、モデル定義、トレーニングのための汎用性のある統一フレームワークHMill'を提案します。
フレームワークに実装されたモデルによって実現されたすべての関数の集合に対する普遍近似定理の拡張を示す。
このフレームワークを使ってサイバーセキュリティドメインから3つの異なる問題を解決する。
論文 参考訳(メタデータ) (2021-04-19T21:32:44Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
交通信号の制御は、都市部の交通渋滞の緩和に必要不可欠である。
問題モデリングの複雑さが高いため、現在の作業の実験的な設定はしばしば矛盾する。
エンコーダ・デコーダ構造を用いた深層強化学習に基づく新規で強力なベースラインモデルを提案する。
論文 参考訳(メタデータ) (2021-01-24T03:55:39Z) - Automated Search for Resource-Efficient Branched Multi-Task Networks [81.48051635183916]
我々は,多タスクニューラルネットワークにおける分岐構造を自動的に定義する,微分可能なニューラルネットワーク探索に根ざした原理的アプローチを提案する。
本手法は,限られた資源予算内で高い性能の分岐構造を見いだすことができる。
論文 参考訳(メタデータ) (2020-08-24T09:49:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。