Enhancing Cooperation through Selective Interaction and Long-term Experiences in Multi-Agent Reinforcement Learning
- URL: http://arxiv.org/abs/2405.02654v2
- Date: Sun, 18 Aug 2024 14:30:52 GMT
- Title: Enhancing Cooperation through Selective Interaction and Long-term Experiences in Multi-Agent Reinforcement Learning
- Authors: Tianyu Ren, Xiao-Jun Zeng,
- Abstract summary: This study introduces a computational framework based on multi-agent reinforcement learning in the spatial Prisoner's Dilemma game.
By modelling each agent using two distinct Q-networks, we disentangle the coevolutionary dynamics between cooperation and interaction.
- Score: 10.932974027102619
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The significance of network structures in promoting group cooperation within social dilemmas has been widely recognized. Prior studies attribute this facilitation to the assortment of strategies driven by spatial interactions. Although reinforcement learning has been employed to investigate the impact of dynamic interaction on the evolution of cooperation, there remains a lack of understanding about how agents develop neighbour selection behaviours and the formation of strategic assortment within an explicit interaction structure. To address this, our study introduces a computational framework based on multi-agent reinforcement learning in the spatial Prisoner's Dilemma game. This framework allows agents to select dilemma strategies and interacting neighbours based on their long-term experiences, differing from existing research that relies on preset social norms or external incentives. By modelling each agent using two distinct Q-networks, we disentangle the coevolutionary dynamics between cooperation and interaction. The results indicate that long-term experience enables agents to develop the ability to identify non-cooperative neighbours and exhibit a preference for interaction with cooperative ones. This emergent self-organizing behaviour leads to the clustering of agents with similar strategies, thereby increasing network reciprocity and enhancing group cooperation.
Related papers
- Multi-agent cooperation through learning-aware policy gradients [53.63948041506278]
Self-interested individuals often fail to cooperate, posing a fundamental challenge for multi-agent learning.
We present the first unbiased, higher-derivative-free policy gradient algorithm for learning-aware reinforcement learning.
We derive from the iterated prisoner's dilemma a novel explanation for how and when cooperation arises among self-interested learning-aware agents.
arXiv Detail & Related papers (2024-10-24T10:48:42Z) - Scaling Large-Language-Model-based Multi-Agent Collaboration [75.5241464256688]
Pioneering advancements in large language model-powered agents have underscored the design pattern of multi-agent collaboration.
Inspired by the neural scaling law, this study investigates whether a similar principle applies to increasing agents in multi-agent collaboration.
arXiv Detail & Related papers (2024-06-11T11:02:04Z) - Group-Aware Coordination Graph for Multi-Agent Reinforcement Learning [19.386588137176933]
Group-Aware Coordination Graph (GACG) is designed to capture cooperation between agent pairs based on current observations.
GACG is further used in graph convolution for information exchange between agents during decision-making.
Our evaluations, conducted on StarCraft II micromanagement tasks, demonstrate GACG's superior performance.
arXiv Detail & Related papers (2024-04-17T01:17:10Z) - AntEval: Evaluation of Social Interaction Competencies in LLM-Driven
Agents [65.16893197330589]
Large Language Models (LLMs) have demonstrated their ability to replicate human behaviors across a wide range of scenarios.
However, their capability in handling complex, multi-character social interactions has yet to be fully explored.
We introduce the Multi-Agent Interaction Evaluation Framework (AntEval), encompassing a novel interaction framework and evaluation methods.
arXiv Detail & Related papers (2024-01-12T11:18:00Z) - Situation-Dependent Causal Influence-Based Cooperative Multi-agent
Reinforcement Learning [18.054709749075194]
We propose a novel MARL algorithm named Situation-Dependent Causal Influence-Based Cooperative Multi-agent Reinforcement Learning (SCIC)
Our approach aims to detect inter-agent causal influences in specific situations based on the criterion using causal intervention and conditional mutual information.
The resulting update links coordinated exploration and intrinsic reward distribution, which enhance overall collaboration and performance.
arXiv Detail & Related papers (2023-12-15T05:09:32Z) - Rethinking Trajectory Prediction via "Team Game" [118.59480535826094]
We present a novel formulation for multi-agent trajectory prediction, which explicitly introduces the concept of interactive group consensus.
On two multi-agent settings, i.e. team sports and pedestrians, the proposed framework consistently achieves superior performance compared to existing methods.
arXiv Detail & Related papers (2022-10-17T07:16:44Z) - Reward-Sharing Relational Networks in Multi-Agent Reinforcement Learning
as a Framework for Emergent Behavior [0.0]
We integrate social' interactions into the MARL setup through a user-defined relational network.
We examine the effects of agent-agent relations on the rise of emergent behaviors.
arXiv Detail & Related papers (2022-07-12T23:27:42Z) - Improved cooperation by balancing exploration and exploitation in
intertemporal social dilemma tasks [2.541277269153809]
We propose a new learning strategy for achieving coordination by incorporating a learning rate that can balance exploration and exploitation.
We show that agents that use the simple strategy improve a relatively collective return in a decision task called the intertemporal social dilemma.
We also explore the effects of the diversity of learning rates on the population of reinforcement learning agents and show that agents trained in heterogeneous populations develop particularly coordinated policies.
arXiv Detail & Related papers (2021-10-19T08:40:56Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
Multi-agent imitation learning aims to train multiple agents to perform tasks from demonstrations by learning a mapping between observations and actions.
In this paper, we propose to use copula, a powerful statistical tool for capturing dependence among random variables, to explicitly model the correlation and coordination in multi-agent systems.
Our proposed model is able to separately learn marginals that capture the local behavioral patterns of each individual agent, as well as a copula function that solely and fully captures the dependence structure among agents.
arXiv Detail & Related papers (2021-07-10T03:49:41Z) - Multi-Agent Interactions Modeling with Correlated Policies [53.38338964628494]
In this paper, we cast the multi-agent interactions modeling problem into a multi-agent imitation learning framework.
We develop a Decentralized Adrial Imitation Learning algorithm with Correlated policies (CoDAIL)
Various experiments demonstrate that CoDAIL can better regenerate complex interactions close to the demonstrators.
arXiv Detail & Related papers (2020-01-04T17:31:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.