On the Information Redundancy in Non-Autoregressive Translation
- URL: http://arxiv.org/abs/2405.02673v1
- Date: Sat, 4 May 2024 14:20:28 GMT
- Title: On the Information Redundancy in Non-Autoregressive Translation
- Authors: Zhihao Wang, Longyue Wang, Jinsong Su, Junfeng Yao, Zhaopeng Tu,
- Abstract summary: Token repetition is a typical form of multi-modal problem in non-autoregressive translation (NAT)
In this work, we revisit the multi-modal problem in recently proposed NAT models.
We identify two types of information redundancy errors that correspond well to lexical and reordering multi-modality problems.
- Score: 82.43992805551498
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Token repetition is a typical form of multi-modal problem in fully non-autoregressive translation (NAT). In this work, we revisit the multi-modal problem in recently proposed NAT models. Our study reveals that these advanced models have introduced other types of information redundancy errors, which cannot be measured by the conventional metric - the continuous repetition ratio. By manually annotating the NAT outputs, we identify two types of information redundancy errors that correspond well to lexical and reordering multi-modality problems. Since human annotation is time-consuming and labor-intensive, we propose automatic metrics to evaluate the two types of redundant errors. Our metrics allow future studies to evaluate new methods and gain a more comprehensive understanding of their effectiveness.
Related papers
- Information Association for Language Model Updating by Mitigating
LM-Logical Discrepancy [68.31760483418901]
Large Language Models(LLMs) struggle with providing current information due to the outdated pre-training data.
Existing methods for updating LLMs, such as knowledge editing and continual fine-tuning, have significant drawbacks in generalizability of new information.
We identify the core challenge behind these drawbacks: the LM-logical discrepancy featuring the difference between language modeling probabilities and logical probabilities.
arXiv Detail & Related papers (2023-05-29T19:48:37Z) - Shared Latent Space by Both Languages in Non-Autoregressive Neural Machine Translation [0.0]
Non-autoregressive neural machine translation (NAT) offers substantial translation speed up compared to autoregressive neural machine translation (AT)
Latent variable modeling has emerged as a promising approach to bridge this quality gap.
arXiv Detail & Related papers (2023-05-02T15:33:09Z) - Correlation Information Bottleneck: Towards Adapting Pretrained
Multimodal Models for Robust Visual Question Answering [63.87200781247364]
Correlation Information Bottleneck (CIB) seeks a tradeoff between compression and redundancy in representations.
We derive a tight theoretical upper bound for the mutual information between multimodal inputs and representations.
arXiv Detail & Related papers (2022-09-14T22:04:10Z) - A Study of Syntactic Multi-Modality in Non-Autoregressive Machine
Translation [144.55713938260828]
It is difficult for non-autoregressive translation models to capture the multi-modal distribution of target translations.
We decompose it into short- and long-range syntactic multi-modalities and evaluate several recent NAT algorithms with advanced loss functions.
We design a new loss function to better handle the complicated syntactic multi-modality in real-world datasets.
arXiv Detail & Related papers (2022-07-09T06:48:10Z) - On the Learning of Non-Autoregressive Transformers [91.34196047466904]
Non-autoregressive Transformer (NAT) is a family of text generation models.
We present theoretical and empirical analyses to reveal the challenges of NAT learning.
arXiv Detail & Related papers (2022-06-13T08:42:09Z) - Modeling Coverage for Non-Autoregressive Neural Machine Translation [9.173385214565451]
We propose a novel Coverage-NAT to model the coverage information directly by a token-level coverage iterative refinement mechanism and a sentence-level coverage agreement.
Experimental results on WMT14 En-De and WMT16 En-Ro translation tasks show that our method can alleviate those errors and achieve strong improvements over the baseline system.
arXiv Detail & Related papers (2021-04-24T07:33:23Z) - Multi-Task Learning with Shared Encoder for Non-Autoregressive Machine
Translation [32.77372312124259]
Non-Autoregressive machine Translation (NAT) models have demonstrated significant inference speedup but suffer from inferior translation accuracy.
We propose to adopt Multi-Task learning to transfer the Autoregressive machine Translation knowledge to NAT models through encoder sharing.
Experimental results on WMT14 English-German and WMT16 English-Romanian datasets show that the proposed Multi-Task NAT achieves significant improvements over the baseline NAT models.
arXiv Detail & Related papers (2020-10-24T11:00:58Z) - LAVA NAT: A Non-Autoregressive Translation Model with Look-Around
Decoding and Vocabulary Attention [54.18121922040521]
Non-autoregressive translation (NAT) models generate multiple tokens in one forward pass.
These NAT models often suffer from the multimodality problem, generating duplicated tokens or missing tokens.
We propose two novel methods to address this issue, the Look-Around (LA) strategy and the Vocabulary Attention (VA) mechanism.
arXiv Detail & Related papers (2020-02-08T04:11:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.