論文の概要: Evaluating the Ability of Computationally Extracted Narrative Maps to Encode Media Framing
- arxiv url: http://arxiv.org/abs/2405.02677v1
- Date: Sat, 4 May 2024 14:40:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 18:49:54.477776
- Title: Evaluating the Ability of Computationally Extracted Narrative Maps to Encode Media Framing
- Title(参考訳): 計算抽出ナラティブマップによるメディアフレームの符号化能力の評価
- Authors: Sebastián Concha Macías, Brian Keith Norambuena,
- Abstract要約: 本稿では、特定の物語抽出と表現アプローチ(物語マップ)の能力について考察する。
本結果は,ニュース物語における複雑なフレーミングのダイナミクスをユーザに提供するナラティブマップの可能性を強調した。
しかし、計算的物語抽出プロセスにおいて、フレーミング情報を直接活用することは、未解決の課題である。
- 参考スコア(独自算出の注目度): 1.2277343096128712
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Narratives serve as fundamental frameworks in our understanding of the world and play a crucial role in collaborative sensemaking, providing a versatile foundation for sensemaking. Framing is a subtle yet potent mechanism that influences public perception through specific word choices, shaping interpretations of reported news events. Despite the recognized importance of narratives and framing, a significant gap exists in the literature with regard to the explicit consideration of framing within the context of computational extraction and representation. This article explores the capabilities of a specific narrative extraction and representation approach -- narrative maps -- to capture framing information from news data. The research addresses two key questions: (1) Does the narrative extraction method capture the framing distribution of the data set? (2) Does it produce a representation with consistent framing? Our results indicate that while the algorithm captures framing distributions, achieving consistent framing across various starting and ending events poses challenges. Our results highlight the potential of narrative maps to provide users with insights into the intricate framing dynamics within news narratives. However, we note that directly leveraging framing information in the computational narrative extraction process remains an open challenge.
- Abstract(参考訳): ナラティブは世界を理解する上での基本的な枠組みとして機能し、コラボレーティブなセンスメイキングにおいて重要な役割を担い、センスメイキングのための汎用的な基盤を提供する。
フラーミングは微妙だが強力なメカニズムであり、特定の単語の選択を通じて大衆の認識に影響を与え、報道されたニュースイベントの解釈を形成する。
物語とフレーミングの重要性が認識されているにもかかわらず、計算の抽出と表現の文脈におけるフレーミングの明確な考慮に関して、文献に顕著なギャップが存在する。
本稿では、ニュースデータからフレーミング情報を取得するための、特定の物語抽出と表現アプローチ(物語マップ)の能力について考察する。
1)ナラティブ抽出法はデータセットのフレーミング分布を捉えるか?
(2) 一貫性のあるフレーミングを持つ表現を生成するか?
この結果から,アルゴリズムはフレーミング分布を捕捉する一方で,様々な開始・終了イベントを一貫したフレーミングを実現することが課題となっている。
本結果は,ニュース物語における複雑なフレーミングのダイナミクスをユーザに提供するナラティブマップの可能性を強調した。
しかし、計算的物語抽出プロセスにおいて、フレーミング情報を直接活用することは、未解決の課題である。
関連論文リスト
- Enhancing Argument Structure Extraction with Efficient Leverage of
Contextual Information [79.06082391992545]
本稿では,コンテキスト情報を完全に活用する効率的なコンテキスト認識モデル(ECASE)を提案する。
文脈情報や議論情報を集約するために,シーケンスアテンションモジュールと距離重み付き類似度損失を導入する。
各種ドメインの5つのデータセットに対する実験により,我々のモデルが最先端の性能を達成することを示す。
論文 参考訳(メタデータ) (2023-10-08T08:47:10Z) - Conflicts, Villains, Resolutions: Towards models of Narrative Media
Framing [19.589945994234075]
我々は、物語の要素を明示的に捉えたコミュニケーション科学から、広く使われているフレーミングの概念化を再考する。
我々は、複雑なアノテーションタスクをより単純なバイナリー質問に分解する効果的なアノテーションパラダイムを適用します。
教師付きおよび半教師付きアプローチによるフレームの自動マルチラベル予測について検討する。
論文 参考訳(メタデータ) (2023-06-03T08:50:13Z) - TRIE++: Towards End-to-End Information Extraction from Visually Rich
Documents [51.744527199305445]
本稿では,視覚的にリッチな文書からエンド・ツー・エンドの情報抽出フレームワークを提案する。
テキスト読み出しと情報抽出は、よく設計されたマルチモーダルコンテキストブロックを介して互いに強化することができる。
フレームワークはエンドツーエンドのトレーニング可能な方法でトレーニングでき、グローバルな最適化が達成できる。
論文 参考訳(メタデータ) (2022-07-14T08:52:07Z) - Better Highlighting: Creating Sub-Sentence Summary Highlights [40.46639471959677]
本稿では,混乱を避けるために,自己完結型ハイライトを生成する新しい手法を提案する。
提案手法は, 決定点過程と文脈表現を組み合わせ, 部分文セグメントの最適集合を同定する。
本手法の柔軟性とモデリング能力を示すため,要約データセットに関する広範な実験を行った。
論文 参考訳(メタデータ) (2020-10-20T18:57:42Z) - Paragraph-level Commonsense Transformers with Recurrent Memory [77.4133779538797]
物語からコヒーレントなコモンセンス推論を生成するために,段落レベルの情報を含む談話認識モデルを訓練する。
以上の結果から,PARA-COMETは文レベルのベースライン,特にコヒーレントかつ新規な推論に優れていた。
論文 参考訳(メタデータ) (2020-10-04T05:24:12Z) - Narrative Maps: An Algorithmic Approach to Represent and Extract
Information Narratives [6.85316573653194]
本稿では、物語表現の理論と現代のオンラインシステムのデータを組み合わせる。
物語地図の表現は、物語の中の出来事と物語を、地図上のランドマークとルートのシリーズとして描いている。
我々の発見は、情報アナリスト、計算ジャーナリスト、誤情報研究者に影響を及ぼす。
論文 参考訳(メタデータ) (2020-09-09T18:30:44Z) - Once Upon A Time In Visualization: Understanding the Use of Textual
Narratives for Causality [21.67542584041709]
因果性ビジュアライゼーションは、イベントの時間的連鎖を理解するのに役立つ。
しかし、これらのイベントシーケンスの規模と複雑さが大きくなるにつれて、これらの視覚化でさえ圧倒的に利用できなくなる。
本稿では、因果性可視化を強化するためのデータ駆動型ストーリーテリング手法として、テキスト物語の利用を提案する。
論文 参考訳(メタデータ) (2020-09-06T05:46:24Z) - TRIE: End-to-End Text Reading and Information Extraction for Document
Understanding [56.1416883796342]
本稿では,統合されたエンドツーエンドのテキスト読解と情報抽出ネットワークを提案する。
テキスト読解のマルチモーダル視覚的特徴とテキスト的特徴は、情報抽出のために融合される。
提案手法は, 精度と効率の両面において, 最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2020-05-27T01:47:26Z) - Screenplay Summarization Using Latent Narrative Structure [78.45316339164133]
本稿では,物語の基盤となる構造を一般教師なし・教師付き抽出要約モデルに明示的に組み込むことを提案する。
重要な物語イベント(転回点)の観点で物語構造を定式化し、脚本を要約するために潜伏状態として扱う。
シーンレベルの要約ラベルを付加したテレビ画面のCSIコーパスの実験結果から,潜角点がCSIエピソードの重要な側面と相関していることが判明した。
論文 参考訳(メタデータ) (2020-04-27T11:54:19Z) - Salience Estimation with Multi-Attention Learning for Abstractive Text
Summarization [86.45110800123216]
テキスト要約のタスクでは、単語、フレーズ、文のサリエンス推定が重要な要素である。
本稿では,サラレンス推定のための2つの新しい注目学習要素を含むマルチアテンション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-07T02:38:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。