論文の概要: Implicit Safe Set Algorithm for Provably Safe Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2405.02754v1
- Date: Sat, 4 May 2024 20:59:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 18:30:11.540189
- Title: Implicit Safe Set Algorithm for Provably Safe Reinforcement Learning
- Title(参考訳): 安全な強化学習のための暗黙のセーフセットアルゴリズム
- Authors: Weiye Zhao, Tairan He, Feihan Li, Changliu Liu,
- Abstract要約: DRLエージェントのセーフガードを合成するためのモデルフリー安全な制御アルゴリズムである暗黙のセーフセットアルゴリズムを提案する。
提案アルゴリズムは,ブラックボックスの動的関数を問合せするだけで,安全指標(バリア証明書)とその後の安全制御則を合成する。
提案アルゴリズムを最先端のSafety Gymベンチマークで検証し、95% pm 9%$ cumulative rewardを得た上で安全性違反をゼロにする。
- 参考スコア(独自算出の注目度): 7.349727826230864
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep reinforcement learning (DRL) has demonstrated remarkable performance in many continuous control tasks. However, a significant obstacle to the real-world application of DRL is the lack of safety guarantees. Although DRL agents can satisfy system safety in expectation through reward shaping, designing agents to consistently meet hard constraints (e.g., safety specifications) at every time step remains a formidable challenge. In contrast, existing work in the field of safe control provides guarantees on persistent satisfaction of hard safety constraints. However, these methods require explicit analytical system dynamics models to synthesize safe control, which are typically inaccessible in DRL settings. In this paper, we present a model-free safe control algorithm, the implicit safe set algorithm, for synthesizing safeguards for DRL agents that ensure provable safety throughout training. The proposed algorithm synthesizes a safety index (barrier certificate) and a subsequent safe control law solely by querying a black-box dynamic function (e.g., a digital twin simulator). Moreover, we theoretically prove that the implicit safe set algorithm guarantees finite time convergence to the safe set and forward invariance for both continuous-time and discrete-time systems. We validate the proposed algorithm on the state-of-the-art Safety Gym benchmark, where it achieves zero safety violations while gaining $95\% \pm 9\%$ cumulative reward compared to state-of-the-art safe DRL methods. Furthermore, the resulting algorithm scales well to high-dimensional systems with parallel computing.
- Abstract(参考訳): 深部強化学習(DRL)は多くの連続制御タスクにおいて顕著な性能を示した。
しかし、DRLの現実的な応用に対する大きな障害は、安全保証の欠如である。
DRLエージェントは報酬形成によって期待されるシステムの安全性を満たすことができるが、常に厳しい制約(例えば安全仕様)を満たすようにエージェントを設計することは、ステップ毎に非常に難しい課題である。
対照的に、安全管理分野における既存の作業は、ハードセーフティ制約の持続的満足度を保証する。
しかし、これらの手法は、DRL設定ではアクセスできない安全な制御を合成するために、明示的な解析系力学モデルを必要とする。
本稿では,DRLエージェントのセーフガードを合成し,トレーニングを通して安全を保証するためのモデルフリー安全制御アルゴリズム,暗黙安全セットアルゴリズムを提案する。
提案アルゴリズムは,ブラックボックスの動的関数(例えば,デジタルツインシミュレータ)をクエリすることで,安全指標(バリア証明書)とそれに続く安全制御法則を合成する。
さらに、暗黙的安全集合アルゴリズムは、連続時間系と離散時間系の両方において、安全な集合と前方不変性に対する有限時間収束を保証することを理論的に証明する。
提案アルゴリズムを最先端のセーフティガイムベンチマークで検証し、最先端の安全DRL法と比較して9,5\% \pm 9\%$累積報酬を得た上で、安全性違反をゼロにする。
さらに、結果のアルゴリズムは並列計算を伴う高次元システムによくスケールする。
関連論文リスト
- Sampling-based Safe Reinforcement Learning for Nonlinear Dynamical
Systems [15.863561935347692]
非線形力学系の制御のための安全かつ収束性のある強化学習アルゴリズムを開発した。
制御とRLの交差点における最近の進歩は、ハードセーフティ制約を強制するための2段階の安全フィルタアプローチに従っている。
我々は,古典的な収束保証を享受するRLコントローラを学習する,一段階のサンプリングに基づくハード制約満足度へのアプローチを開発する。
論文 参考訳(メタデータ) (2024-03-06T19:39:20Z) - Safe Exploration in Reinforcement Learning: A Generalized Formulation
and Algorithms [8.789204441461678]
本稿では,安全な探査のためのメタアルゴリズムであるMASEの形で,安全な探査(GSE)問題の解を提案する。
提案アルゴリズムは,グリッドワールドおよびセーフティガイムベンチマークにおける最先端アルゴリズムよりも優れた性能を実現する。
論文 参考訳(メタデータ) (2023-10-05T00:47:09Z) - Approximate Model-Based Shielding for Safe Reinforcement Learning [83.55437924143615]
本稿では,学習したRLポリシーの性能を検証するための,原則的ルックアヘッド遮蔽アルゴリズムを提案する。
我々のアルゴリズムは他の遮蔽手法と異なり、システムの安全性関連力学の事前知識を必要としない。
我々は,国家依存型安全ラベルを持つアタリゲームにおいて,他の安全を意識したアプローチよりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-07-27T15:19:45Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
本稿では、国家安全RLの観点から、この領域における先行研究を再考する。
安全最適化と安全予測を組み合わせた共同手法であるUnrolling Safety Layer (USL)を提案する。
この領域のさらなる研究を容易にするため、我々は関連するアルゴリズムを統一パイプラインで再現し、SafeRL-Kitに組み込む。
論文 参考訳(メタデータ) (2022-12-12T06:30:17Z) - Safe and Efficient Reinforcement Learning Using
Disturbance-Observer-Based Control Barrier Functions [5.571154223075409]
本稿では、外乱オブザーバ(DOB)と制御バリア機能(CBF)を用いた安全かつ効率的な強化学習(RL)手法を提案する。
本手法はモデル学習を伴わず,DOBを用いて不確実性のポイントワイド値を正確に推定し,安全行動を生成するための頑健なCBF条件に組み込む。
提案手法は,CBFとガウス過程に基づくモデル学習を用いて,最先端の安全なRLアルゴリズムより優れていることを示す。
論文 参考訳(メタデータ) (2022-11-30T18:49:53Z) - Safe Model-Based Reinforcement Learning with an Uncertainty-Aware
Reachability Certificate [6.581362609037603]
我々は、DRCとそれに対応するシールドポリシーの制約を解決するために、安全な強化学習フレームワークを構築します。
また,シールドポリシを活用しつつ,安全性と高いリターンを同時に達成するためのラインサーチ手法も考案した。
論文 参考訳(メタデータ) (2022-10-14T06:16:53Z) - Enforcing Hard Constraints with Soft Barriers: Safe Reinforcement
Learning in Unknown Stochastic Environments [84.3830478851369]
本研究では,環境を協調的に学習し,制御ポリシーを最適化する安全な強化学習手法を提案する。
本手法は, 安全性の制約を効果的に適用し, シミュレーションにより測定したシステム安全率においてCMDPベースのベースライン法を著しく上回っている。
論文 参考訳(メタデータ) (2022-09-29T20:49:25Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
CBFをベースとした安全クリティカルコントローラのモデル不確実性を考慮した再構成を提案する。
次に、結果の安全制御器のポイントワイズ実現可能性条件を示す。
これらの条件を利用して、イベントトリガーによるオンラインデータ収集戦略を考案する。
論文 参考訳(メタデータ) (2022-08-23T05:02:09Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
本稿では,学習時の安全性維持が不可欠である高次元非線形最適化問題に対する一般的なアプローチを提案する。
LBSGDと呼ばれるアプローチは、慎重に選択されたステップサイズで対数障壁近似を適用することに基づいている。
安全強化学習における政策課題の違反を最小限に抑えるためのアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-07-21T11:14:47Z) - Safe Reinforcement Learning via Confidence-Based Filters [78.39359694273575]
我々は,標準的な強化学習技術を用いて学習した名目政策に対して,国家安全の制約を認定するための制御理論的アプローチを開発する。
我々は、正式な安全保証を提供し、我々のアプローチの有効性を実証的に実証する。
論文 参考訳(メタデータ) (2022-07-04T11:43:23Z) - Model-Based Safe Reinforcement Learning with Time-Varying State and
Control Constraints: An Application to Intelligent Vehicles [13.40143623056186]
本稿では、時間変化状態と制御制約を持つ非線形システムの最適制御のための安全なRLアルゴリズムを提案する。
多段階の政策評価機構が提案され、時間変化による安全制約の下での政策の安全性リスクを予測し、安全更新を誘導する。
提案アルゴリズムは、シミュレーションされたセーフティガイム環境において、最先端のRLアルゴリズムよりも優れている。
論文 参考訳(メタデータ) (2021-12-18T10:45:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。