論文の概要: Linear Noise Approximation Assisted Bayesian Inference on Mechanistic Model of Partially Observed Stochastic Reaction Network
- arxiv url: http://arxiv.org/abs/2405.02783v2
- Date: Fri, 28 Jun 2024 23:30:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-02 14:10:11.590447
- Title: Linear Noise Approximation Assisted Bayesian Inference on Mechanistic Model of Partially Observed Stochastic Reaction Network
- Title(参考訳): 部分的に観測された確率的反応ネットワークの力学モデルにおける線形雑音近似によるベイズ推定
- Authors: Wandi Xu, Wei Xie,
- Abstract要約: 本稿では、部分的に観察された酵素反応ネットワーク(SRN)に対する効率的なベイズ推論手法を開発する。
線形雑音近似(LNA)メタモデルを提案する。
マルコフ・チェイン・モンテカルロの収束を高速化するために、導出確率の勾配を利用して効率的な後方サンプリング手法を開発した。
- 参考スコア(独自算出の注目度): 2.325005809983534
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To support mechanism online learning and facilitate digital twin development for biomanufacturing processes, this paper develops an efficient Bayesian inference approach for partially observed enzymatic stochastic reaction network (SRN), a fundamental building block of multi-scale bioprocess mechanistic model. To tackle the critical challenges brought by the nonlinear stochastic differential equations (SDEs)-based mechanistic model with partially observed state and having measurement errors, an interpretable Bayesian updating linear noise approximation (LNA) metamodel, incorporating the structure information of the mechanistic model, is proposed to approximate the likelihood of observations. Then, an efficient posterior sampling approach is developed by utilizing the gradients of the derived likelihood to speed up the convergence of Markov Chain Monte Carlo (MCMC). The empirical study demonstrates that the proposed approach has a promising performance.
- Abstract(参考訳): そこで本研究では, バイオプロセス・メカニカルモデルの基本構築ブロックである部分的に観察された酵素的確率的反応ネットワーク(SRN)に対する効率的なベイズ推論手法を提案する。
非線形確率微分方程式(SDE)に基づく力学モデルにおいて,部分的に観測された状態と測定誤差を有する重要な問題に対処するために,力学モデルの構造情報を組み込んだ線形雑音近似(LNA)メタモデルを提案する。
次に,マルコフ・チェイン・モンテカルロ(MCMC)の収束を高速化するために,導出確率の勾配を利用して効率的な後方サンプリング手法を開発した。
実証的研究は、提案手法が有望な性能を持つことを示す。
関連論文リスト
- Online Variational Sequential Monte Carlo [49.97673761305336]
我々は,計算効率が高く正確なモデルパラメータ推定とベイジアン潜在状態推定を提供する変分連続モンテカルロ法(VSMC)を構築した。
オンラインVSMCは、パラメータ推定と粒子提案適応の両方を効率よく、完全にオンザフライで実行することができる。
論文 参考訳(メタデータ) (2023-12-19T21:45:38Z) - Free-Form Variational Inference for Gaussian Process State-Space Models [21.644570034208506]
ベイズGPSSMにおける新しい推論法を提案する。
本手法はハミルトニアンモンテカルロの誘導による自由形式変分推論に基づく。
提案手法は, 競合する手法よりも, 遷移力学や潜伏状態をより正確に学習できることを示す。
論文 参考訳(メタデータ) (2023-02-20T11:34:16Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - Distributed Bayesian Learning of Dynamic States [65.7870637855531]
提案アルゴリズムは有限状態隠れマルコフモデルに対する分散ベイズフィルタタスクである。
逐次状態推定や、動的環境下でのソーシャルネットワーク上での意見形成のモデル化に使用できる。
論文 参考訳(メタデータ) (2022-12-05T19:40:17Z) - Multielement polynomial chaos Kriging-based metamodelling for Bayesian
inference of non-smooth systems [0.0]
本稿では,高非線形工学モデルのベイズパラメータ推定のための領域分割に基づく代理モデリング手法を提案する。
開発されたサロゲートモデルは、入力空間の非重複の有限集合上に構築された局所ポリノミアルカオスに基づくクリギングメタモデルの配列を断片的に関数として結合する。
提案手法の有効性と精度は,解析的ベンチマークと数値的ケーススタディを含む2つのケーススタディを通じて検証される。
論文 参考訳(メタデータ) (2022-12-05T13:22:39Z) - Counting Phases and Faces Using Bayesian Thermodynamic Integration [77.34726150561087]
本稿では,2パラメータ統計力学系における熱力学関数と位相境界の再構成手法を提案する。
提案手法を用いて,IsingモデルとTASEPの分割関数と位相図を正確に再構成する。
論文 参考訳(メタデータ) (2022-05-18T17:11:23Z) - Dynamic Bayesian Network Auxiliary ABC-SMC for Hybrid Model Bayesian
Inference to Accelerate Biomanufacturing Process Mechanism Learning and
Robust Control [2.727760379582405]
本稿では,バイオプロセッシング機構の複雑な因果関係を特徴付ける知識グラフハイブリッドモデルを提案する。
非線形反応、部分的に観察された状態、非定常力学を含む重要な性質を忠実に捉えることができる。
我々は、メカニズム学習を容易にし、ロバストなプロセス制御を支援する後部分布モデルの不確かさを導出する。
論文 参考訳(メタデータ) (2022-05-05T02:54:21Z) - A Variational Approach to Bayesian Phylogenetic Inference [7.251627034538359]
ベイズ系統解析のための変分フレームワークを提案する。
我々はマルコフ勾配法による変分近似を訓練し、連続的および離散的な変分パラメータに対する推定器を採用する。
実データ系統推定問題に対するベンチマーク実験により,本手法の有効性と有効性を示す。
論文 参考訳(メタデータ) (2022-04-16T08:23:48Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [55.28436972267793]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z) - Modeling Stochastic Microscopic Traffic Behaviors: a Physics Regularized
Gaussian Process Approach [1.6242924916178285]
本研究では,実世界のランダム性を捉え,誤差を計測できる微視的交通モデルを提案する。
提案フレームワークの特長の一つは,自動車追従行動と車線変更行動の両方を1つのモデルで捉える能力である。
論文 参考訳(メタデータ) (2020-07-17T06:03:32Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
経験的最適化は現代の機械学習の中心であるが、その成功における役割はまだ不明である。
分散による離散乗法雑音のパラメータによく現れることを示す。
最新のステップサイズやデータを含む重要な要素について、詳細な分析を行い、いずれも最先端のニューラルネットワークモデルで同様の結果を示す。
論文 参考訳(メタデータ) (2020-06-11T09:58:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。