論文の概要: Mozart's Touch: A Lightweight Multi-modal Music Generation Framework Based on Pre-Trained Large Models
- arxiv url: http://arxiv.org/abs/2405.02801v1
- Date: Sun, 5 May 2024 03:15:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 18:20:16.692453
- Title: Mozart's Touch: A Lightweight Multi-modal Music Generation Framework Based on Pre-Trained Large Models
- Title(参考訳): Mozartのタッチ: 事前学習された大規模モデルに基づく軽量マルチモーダル音楽生成フレームワーク
- Authors: Tianze Xu, Jiajun Li, Xuesong Chen, Yinrui Yao, Shuchang Liu,
- Abstract要約: MozartのTouchは、マルチモーダルキャプションモジュール、LLM (Large Language Model) Understanding & Bridging Module、Music Generation Moduleの3つの主要コンポーネントで構成されている。
従来のアプローチとは異なり、MozartのTouchはトレーニングや微調整を必要とせず、透明で解釈可能なプロンプトを通じて効率と透明性を提供する。
- 参考スコア(独自算出の注目度): 9.311353871322325
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, AI-Generated Content (AIGC) has witnessed rapid advancements, facilitating the generation of music, images, and other forms of artistic expression across various industries. However, researches on general multi-modal music generation model remain scarce. To fill this gap, we propose a multi-modal music generation framework Mozart's Touch. It could generate aligned music with the cross-modality inputs, such as images, videos and text. Mozart's Touch is composed of three main components: Multi-modal Captioning Module, Large Language Model (LLM) Understanding & Bridging Module, and Music Generation Module. Unlike traditional approaches, Mozart's Touch requires no training or fine-tuning pre-trained models, offering efficiency and transparency through clear, interpretable prompts. We also introduce "LLM-Bridge" method to resolve the heterogeneous representation problems between descriptive texts of different modalities. We conduct a series of objective and subjective evaluations on the proposed model, and results indicate that our model surpasses the performance of current state-of-the-art models. Our codes and examples is availble at: https://github.com/WangTooNaive/MozartsTouch
- Abstract(参考訳): 近年、AIGC(AI-Generated Content)は、様々な産業における音楽、画像、その他の芸術表現の創出を促進する、急速な進歩を目撃している。
しかし、一般的なマルチモーダル音楽生成モデルに関する研究はほとんどない。
このギャップを埋めるために,マルチモーダル音楽生成フレームワークであるMozart's Touchを提案する。
画像やビデオ、テキストなど、モダリティを越えた入力と整列した音楽を生成することができる。
MozartのTouchは、マルチモーダルキャプションモジュール、LLM (Large Language Model) Understanding & Bridging Module、Music Generation Moduleの3つの主要コンポーネントで構成されている。
従来のアプローチとは異なり、MozartのTouchはトレーニングや微調整を必要とせず、透明で解釈可能なプロンプトを通じて効率と透明性を提供する。
また,モーダルの異なる記述テキスト間の異種表現問題を解くために,LLM-Bridge法を導入する。
本研究は,提案モデルに基づく客観的および主観的な評価を行い,本モデルが現在の最先端モデルの性能を上回っていることを示す。
https://github.com/WangTooNaive/MozartsTouch
関連論文リスト
- UniMuMo: Unified Text, Music and Motion Generation [57.72514622935806]
任意のテキスト,音楽,動作データを入力条件として取り込んで,3つのモードすべてにまたがる出力を生成する,統一型マルチモーダルモデルUniMuMoを導入する。
音楽、動き、テキストをトークンベースの表現に変換することで、我々のモデルはエンコーダ・デコーダ・トランスフォーマアーキテクチャを通じてこれらのモダリティをブリッジする。
論文 参考訳(メタデータ) (2024-10-06T16:04:05Z) - Bridging Paintings and Music -- Exploring Emotion based Music Generation through Paintings [10.302353984541497]
本研究では,視覚芸術で表現される感情に共鳴する音楽を生成するモデルを開発した。
コーディネートアートと音楽データの不足に対処するため、私たちはEmotion Painting Musicデータセットをキュレートした。
我々の2段階のフレームワークは、イメージを感情的内容のテキスト記述に変換し、これらの記述を音楽に変換することで、最小限のデータによる効率的な学習を容易にする。
論文 参考訳(メタデータ) (2024-09-12T08:19:25Z) - MeLFusion: Synthesizing Music from Image and Language Cues using Diffusion Models [57.47799823804519]
私たちは、ミュージシャンが映画の脚本だけでなく、視覚化を通して音楽を作る方法にインスピレーションを受けています。
本稿では,テキスト記述と対応する画像からの手がかりを効果的に利用して音楽を合成するモデルであるMeLFusionを提案する。
音楽合成パイプラインに視覚情報を加えることで、生成した音楽の質が大幅に向上することを示す。
論文 参考訳(メタデータ) (2024-06-07T06:38:59Z) - MuPT: A Generative Symbolic Music Pretrained Transformer [56.09299510129221]
音楽の事前学習におけるLarge Language Models (LLM) の適用について検討する。
生成過程の異なるトラックからの不整合対策に関連する課題に対処するために,SMT-ABC Notation(Synchronized Multi-Track ABC Notation)を提案する。
私たちのコントリビューションには、最大8192個のトークンを処理可能な一連のモデルが含まれており、トレーニングセットの象徴的な音楽データの90%をカバーしています。
論文 参考訳(メタデータ) (2024-04-09T15:35:52Z) - Video2Music: Suitable Music Generation from Videos using an Affective
Multimodal Transformer model [32.801213106782335]
我々は、提供されたビデオにマッチできる生成型音楽AIフレームワーク、Video2Musicを開発した。
そこで本研究では,映像コンテンツにマッチする楽曲を感情的に生成する手法を提案する。
論文 参考訳(メタデータ) (2023-11-02T03:33:00Z) - Simple and Controllable Music Generation [94.61958781346176]
MusicGenは単一の言語モデル(LM)であり、圧縮された離散的な音楽表現、すなわちトークンの複数のストリームで動作する。
以前の作業とは異なり、MusicGenはシングルステージのトランスフォーマーLMと効率的なトークンインターリービングパターンで構成されている。
論文 参考訳(メタデータ) (2023-06-08T15:31:05Z) - The Power of Reuse: A Multi-Scale Transformer Model for Structural
Dynamic Segmentation in Symbolic Music Generation [6.0949335132843965]
シンボリック・ミュージック・ジェネレーションは、生成モデルの文脈表現能力に依存している。
粗大デコーダと細小デコーダを用いて,グローバルおよびセクションレベルのコンテキストをモデル化するマルチスケールトランスフォーマを提案する。
本モデルは2つのオープンMIDIデータセットで評価され,実験により,同時代のシンボリック・ミュージック・ジェネレーション・モデルよりも優れた性能を示した。
論文 参考訳(メタデータ) (2022-05-17T18:48:14Z) - Quantized GAN for Complex Music Generation from Dance Videos [48.196705493763986]
D2M-GAN(Dance2Music-GAN, D2M-GAN, D2M-GAN)は、ダンスビデオに条件付けされた楽曲のサンプルを生成する新しいマルチモーダルフレームワークである。
提案フレームワークは,ダンスビデオフレームと人体の動きを入力とし,対応する入力に付随する音楽サンプルを生成することを学習する。
論文 参考訳(メタデータ) (2022-04-01T17:53:39Z) - Music Gesture for Visual Sound Separation [121.36275456396075]
ミュージック・ジェスチャ(Music Gesture)は、音楽演奏時の演奏者の身体と指の動きを明示的にモデル化するキーポイントに基づく構造化表現である。
まず、コンテキスト対応グラフネットワークを用いて、視覚的コンテキストと身体力学を統合し、その後、身体の動きと対応する音声信号とを関連付けるために、音声-視覚融合モデルを適用する。
論文 参考訳(メタデータ) (2020-04-20T17:53:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。