Halfway Escape Optimization: A Quantum-Inspired Solution for General Optimization Problems
- URL: http://arxiv.org/abs/2405.02850v7
- Date: Tue, 24 Sep 2024 12:11:50 GMT
- Title: Halfway Escape Optimization: A Quantum-Inspired Solution for General Optimization Problems
- Authors: Jiawen Li, Anwar PP Abdul Majeed, Pascal Lefevre,
- Abstract summary: This paper first proposes the Halfway Escape Optimization (HEO) algorithm, a quantum-inspired metaheuristic designed to address general optimization problems.
After the introduction to the HEO mechansims, the study presents a comprehensive evaluation of HEO's performance against extensively-used optimization algorithms.
The test of HEO in Pressure Vessel Design and Tubular Column Design infers its feasibility and potential in real-time applications.
- Score: 6.3816899727206895
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper first proposes the Halfway Escape Optimization (HEO) algorithm, a quantum-inspired metaheuristic designed to address general optimization problems. The HEO mimics the effects between quantum such as tunneling, entanglement. After the introduction to the HEO mechansims, the study presents a comprehensive evaluation of HEO's performance against extensively-used optimization algorithms, including Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Artificial Fish Swarm Algorithm (AFSA), Grey Wolf Optimizer (GWO), and Quantum behaved Particle Swarm Optimization (QPSO). The primary analysis encompasses 14 benchmark functions with dimension 30, demonstrating HEO's effectiveness and adaptability in navigating general optimization problems. The test of HEO in Pressure Vessel Design and Tubular Column Design also infers its feasibility and potential in real-time applications. Further validation of HEO in Osmancik-97 and Cammeo Rice Classification achieves a higher accuracy record.
Related papers
- Randomized Benchmarking of Local Zeroth-Order Optimizers for Variational
Quantum Systems [65.268245109828]
We compare the performance of classicals across a series of partially-randomized tasks.
We focus on local zeroth-orders due to their generally favorable performance and query-efficiency on quantum systems.
arXiv Detail & Related papers (2023-10-14T02:13:26Z) - Quantum approximate optimization via learning-based adaptive
optimization [5.399532145408153]
Quantum approximate optimization algorithm (QAOA) is designed to solve objective optimization problems.
Our results demonstrate that the algorithm greatly outperforms conventional approximations in terms of speed, accuracy, efficiency and stability.
This work helps to unlock the full power of QAOA and paves the way toward achieving quantum advantage in practical classical tasks.
arXiv Detail & Related papers (2023-03-27T02:14:56Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
We consider a generalization of Shannon entropy from work in statistical decision theory.
We first show that special cases of this entropy lead to popular acquisition functions used in BO procedures.
We then show how alternative choices for the loss yield a flexible family of acquisition functions.
arXiv Detail & Related papers (2022-10-04T04:43:58Z) - Prog-QAOA: Framework for resource-efficient quantum optimization through classical programs [0.0]
Current quantum optimization algorithms require representing the original problem as a binary optimization problem, which is then converted into an equivalent Ising model suitable for the quantum device.
We propose to design classical programs for computing the objective function and certifying the constraints, and later compile them to quantum circuits.
This results in a new variant of the Quantum Approximate Optimization Algorithm (QAOA), which we name the Prog-QAOA.
arXiv Detail & Related papers (2022-09-07T18:01:01Z) - Performance comparison of optimization methods on variational quantum
algorithms [2.690135599539986]
Variational quantum algorithms (VQAs) offer a promising path towards using near-term quantum hardware for applications in academic and industrial research.
We study the performance of four commonly used gradient-free optimization methods: SLSQP, COBYLA, CMA-ES, and SPSA.
arXiv Detail & Related papers (2021-11-26T12:13:20Z) - Quantum variational optimization: The role of entanglement and problem
hardness [0.0]
We study the role of entanglement, the structure of the variational quantum circuit, and the structure of the optimization problem.
Our numerical results indicate an advantage in adapting the distribution of entangling gates to the problem's topology.
We find evidence that applying conditional value at risk type cost functions improves the optimization, increasing the probability of overlap with the optimal solutions.
arXiv Detail & Related papers (2021-03-26T14:06:54Z) - Optimizing Large-Scale Hyperparameters via Automated Learning Algorithm [97.66038345864095]
We propose a new hyperparameter optimization method with zeroth-order hyper-gradients (HOZOG)
Specifically, we first formulate hyperparameter optimization as an A-based constrained optimization problem.
Then, we use the average zeroth-order hyper-gradients to update hyper parameters.
arXiv Detail & Related papers (2021-02-17T21:03:05Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z) - Generalized Self-Adapting Particle Swarm Optimization algorithm with
archive of samples [0.0]
The paper introduces a new version of the algorithm, abbreviated as M-GAPSO.
In comparison with the original GAPSO formulation it includes the following four features: a global restart management scheme, samples gathering within an R-Tree based index, adaptation of a sampling behavior based on a global particle performance, and a specific approach to local search.
arXiv Detail & Related papers (2020-02-28T00:03:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.