Multimodal Sense-Informed Prediction of 3D Human Motions
- URL: http://arxiv.org/abs/2405.02911v1
- Date: Sun, 5 May 2024 12:38:10 GMT
- Title: Multimodal Sense-Informed Prediction of 3D Human Motions
- Authors: Zhenyu Lou, Qiongjie Cui, Haofan Wang, Xu Tang, Hong Zhou,
- Abstract summary: This work introduces a novel multi-modal sense-informed motion prediction approach, which conditions high-fidelity generation on two modal information.
The gaze information is regarded as the human intention, and combined with both motion and scene features, we construct a ternary intention-aware attention to supervise the generation.
On two real-world benchmarks, the proposed method achieves state-of-the-art performance both in 3D human pose and trajectory prediction.
- Score: 16.71099574742631
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predicting future human pose is a fundamental application for machine intelligence, which drives robots to plan their behavior and paths ahead of time to seamlessly accomplish human-robot collaboration in real-world 3D scenarios. Despite encouraging results, existing approaches rarely consider the effects of the external scene on the motion sequence, leading to pronounced artifacts and physical implausibilities in the predictions. To address this limitation, this work introduces a novel multi-modal sense-informed motion prediction approach, which conditions high-fidelity generation on two modal information: external 3D scene, and internal human gaze, and is able to recognize their salience for future human activity. Furthermore, the gaze information is regarded as the human intention, and combined with both motion and scene features, we construct a ternary intention-aware attention to supervise the generation to match where the human wants to reach. Meanwhile, we introduce semantic coherence-aware attention to explicitly distinguish the salient point clouds and the underlying ones, to ensure a reasonable interaction of the generated sequence with the 3D scene. On two real-world benchmarks, the proposed method achieves state-of-the-art performance both in 3D human pose and trajectory prediction.
Related papers
- Human-Aware 3D Scene Generation with Spatially-constrained Diffusion Models [16.259040755335885]
Previous auto-regression-based 3D scene generation methods have struggled to accurately capture the joint distribution of multiple objects and input humans.
We introduce two spatial collision guidance mechanisms: human-object collision avoidance and object-room boundary constraints.
Our framework can generate more natural and plausible 3D scenes with precise human-scene interactions.
arXiv Detail & Related papers (2024-06-26T08:18:39Z) - Social-Transmotion: Promptable Human Trajectory Prediction [65.80068316170613]
Social-Transmotion is a generic Transformer-based model that exploits diverse and numerous visual cues to predict human behavior.
Our approach is validated on multiple datasets, including JTA, JRDB, Pedestrians and Cyclists in Road Traffic, and ETH-UCY.
arXiv Detail & Related papers (2023-12-26T18:56:49Z) - Scene-aware Human Motion Forecasting via Mutual Distance Prediction [13.067687949642641]
We propose to model the human-scene interaction with the mutual distance between the human body and the scene.
Such mutual distances constrain both the local and global human motion, resulting in a whole-body motion constrained prediction.
We develop a pipeline with two sequential steps: predicting the future mutual distances first, followed by forecasting future human motion.
arXiv Detail & Related papers (2023-10-01T08:32:46Z) - Robots That Can See: Leveraging Human Pose for Trajectory Prediction [30.919756497223343]
We present a Transformer based architecture to predict human future trajectories in human-centric environments.
The resulting model captures the inherent uncertainty for future human trajectory prediction.
We identify new agents with limited historical data as a major contributor to error and demonstrate the complementary nature of 3D skeletal poses in reducing prediction error.
arXiv Detail & Related papers (2023-09-29T13:02:56Z) - GIMO: Gaze-Informed Human Motion Prediction in Context [75.52839760700833]
We propose a large-scale human motion dataset that delivers high-quality body pose sequences, scene scans, and ego-centric views with eye gaze.
Our data collection is not tied to specific scenes, which further boosts the motion dynamics observed from our subjects.
To realize the full potential of gaze, we propose a novel network architecture that enables bidirectional communication between the gaze and motion branches.
arXiv Detail & Related papers (2022-04-20T13:17:39Z) - Investigating Pose Representations and Motion Contexts Modeling for 3D
Motion Prediction [63.62263239934777]
We conduct an indepth study on various pose representations with a focus on their effects on the motion prediction task.
We propose a novel RNN architecture termed AHMR (Attentive Hierarchical Motion Recurrent network) for motion prediction.
Our approach outperforms the state-of-the-art methods in short-term prediction and achieves much enhanced long-term prediction proficiency.
arXiv Detail & Related papers (2021-12-30T10:45:22Z) - Scene-aware Generative Network for Human Motion Synthesis [125.21079898942347]
We propose a new framework, with the interaction between the scene and the human motion taken into account.
Considering the uncertainty of human motion, we formulate this task as a generative task.
We derive a GAN based learning approach, with discriminators to enforce the compatibility between the human motion and the contextual scene.
arXiv Detail & Related papers (2021-05-31T09:05:50Z) - TRiPOD: Human Trajectory and Pose Dynamics Forecasting in the Wild [77.59069361196404]
TRiPOD is a novel method for predicting body dynamics based on graph attentional networks.
To incorporate a real-world challenge, we learn an indicator representing whether an estimated body joint is visible/invisible at each frame.
Our evaluation shows that TRiPOD outperforms all prior work and state-of-the-art specifically designed for each of the trajectory and pose forecasting tasks.
arXiv Detail & Related papers (2021-04-08T20:01:00Z) - Long-term Human Motion Prediction with Scene Context [60.096118270451974]
We propose a novel three-stage framework for predicting human motion.
Our method first samples multiple human motion goals, then plans 3D human paths towards each goal, and finally predicts 3D human pose sequences following each path.
arXiv Detail & Related papers (2020-07-07T17:59:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.