On the Tractability of SHAP Explanations under Markovian Distributions
- URL: http://arxiv.org/abs/2405.02936v2
- Date: Fri, 24 May 2024 23:45:34 GMT
- Title: On the Tractability of SHAP Explanations under Markovian Distributions
- Authors: Reda Marzouk, Colin de La Higuera,
- Abstract summary: The SHAP framework is one of the most widely utilized frameworks for local explainability of ML models.
Despite its popularity, its exact computation is known to be very challenging, proven to be NP-Hard in various configurations.
Recent works have unveiled positive complexity results regarding the computation of the SHAP score for specific model families.
- Score: 0.1578515540930834
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Thanks to its solid theoretical foundation, the SHAP framework is arguably one the most widely utilized frameworks for local explainability of ML models. Despite its popularity, its exact computation is known to be very challenging, proven to be NP-Hard in various configurations. Recent works have unveiled positive complexity results regarding the computation of the SHAP score for specific model families, encompassing decision trees, random forests, and some classes of boolean circuits. Yet, all these positive results hinge on the assumption of feature independence, often simplistic in real-world scenarios. In this article, we investigate the computational complexity of the SHAP score by relaxing this assumption and introducing a Markovian perspective. We show that, under the Markovian assumption, computing the SHAP score for the class of Weighted automata, Disjoint DNFs and Decision Trees can be performed in polynomial time, offering a first positive complexity result for the problem of SHAP score computation that transcends the limitations of the feature independence assumption.
Related papers
- LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning [56.273799410256075]
The framework combines Monte Carlo Tree Search (MCTS) with iterative Self-Refine to optimize the reasoning path.
The framework has been tested on general and advanced benchmarks, showing superior performance in terms of search efficiency and problem-solving capability.
arXiv Detail & Related papers (2024-10-03T18:12:29Z) - The Distributional Uncertainty of the SHAP score in Explainable Machine Learning [2.655371341356892]
We propose a principled framework for reasoning on SHAP scores under unknown entity population distributions.
We study the basic problems of finding maxima and minima of this function, which allows us to determine tight ranges for the SHAP scores of all features.
arXiv Detail & Related papers (2024-01-23T13:04:02Z) - Provably Efficient UCB-type Algorithms For Learning Predictive State
Representations [55.00359893021461]
The sequential decision-making problem is statistically learnable if it admits a low-rank structure modeled by predictive state representations (PSRs)
This paper proposes the first known UCB-type approach for PSRs, featuring a novel bonus term that upper bounds the total variation distance between the estimated and true models.
In contrast to existing approaches for PSRs, our UCB-type algorithms enjoy computational tractability, last-iterate guaranteed near-optimal policy, and guaranteed model accuracy.
arXiv Detail & Related papers (2023-07-01T18:35:21Z) - A $k$-additive Choquet integral-based approach to approximate the SHAP
values for local interpretability in machine learning [8.637110868126546]
This paper aims at providing some interpretability for machine learning models based on Shapley values.
A SHAP-based method called Kernel SHAP adopts an efficient strategy that approximates such values with less computational effort.
The obtained results attest that our proposal needs less computations on coalitions of attributes to approximate the SHAP values.
arXiv Detail & Related papers (2022-11-03T22:34:50Z) - Optimistic MLE -- A Generic Model-based Algorithm for Partially
Observable Sequential Decision Making [48.87943416098096]
This paper introduces a simple efficient learning algorithms for general sequential decision making.
We prove that OMLE learns near-optimal policies of an enormously rich class of sequential decision making problems.
arXiv Detail & Related papers (2022-09-29T17:56:25Z) - Semantic Probabilistic Layers for Neuro-Symbolic Learning [83.25785999205932]
We design a predictive layer for structured-output prediction (SOP)
It can be plugged into any neural network guaranteeing its predictions are consistent with a set of predefined symbolic constraints.
Our Semantic Probabilistic Layer (SPL) can model intricate correlations, and hard constraints, over a structured output space.
arXiv Detail & Related papers (2022-06-01T12:02:38Z) - Efficient semidefinite-programming-based inference for binary and
multi-class MRFs [83.09715052229782]
We propose an efficient method for computing the partition function or MAP estimate in a pairwise MRF.
We extend semidefinite relaxations from the typical binary MRF to the full multi-class setting, and develop a compact semidefinite relaxation that can again be solved efficiently using the solver.
arXiv Detail & Related papers (2020-12-04T15:36:29Z) - On the Tractability of SHAP Explanations [40.829629145230356]
SHAP explanations are a popular feature-attribution mechanism for explainable AI.
We show that the complexity of computing the SHAP explanation is the same as the complexity of computing the expected value of the model.
Going beyond fully-factorized distributions, we show that computing SHAP explanations is already intractable for a very simple setting.
arXiv Detail & Related papers (2020-09-18T05:48:15Z) - The Tractability of SHAP-Score-Based Explanations over Deterministic and
Decomposable Boolean Circuits [2.8682942808330703]
We show that the SHAP-score can be computed in time over the class of decision trees.
We also establish the computational limits of the notion of SHAP-score.
arXiv Detail & Related papers (2020-07-28T08:04:28Z) - Sample-Efficient Reinforcement Learning of Undercomplete POMDPs [91.40308354344505]
This work shows that these hardness barriers do not preclude efficient reinforcement learning for rich and interesting subclasses of Partially Observable Decision Processes (POMDPs)
We present a sample-efficient algorithm, OOM-UCB, for episodic finite undercomplete POMDPs, where the number of observations is larger than the number of latent states and where exploration is essential for learning, thus distinguishing our results from prior works.
arXiv Detail & Related papers (2020-06-22T17:58:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.