Semantic Probabilistic Layers for Neuro-Symbolic Learning
- URL: http://arxiv.org/abs/2206.00426v1
- Date: Wed, 1 Jun 2022 12:02:38 GMT
- Title: Semantic Probabilistic Layers for Neuro-Symbolic Learning
- Authors: Kareem Ahmed, Stefano Teso, Kai-Wei Chang, Guy Van den Broeck, Antonio
Vergari
- Abstract summary: We design a predictive layer for structured-output prediction (SOP)
It can be plugged into any neural network guaranteeing its predictions are consistent with a set of predefined symbolic constraints.
Our Semantic Probabilistic Layer (SPL) can model intricate correlations, and hard constraints, over a structured output space.
- Score: 83.25785999205932
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We design a predictive layer for structured-output prediction (SOP) that can
be plugged into any neural network guaranteeing its predictions are consistent
with a set of predefined symbolic constraints. Our Semantic Probabilistic Layer
(SPL) can model intricate correlations, and hard constraints, over a structured
output space all while being amenable to end-to-end learning via maximum
likelihood. SPLs combine exact probabilistic inference with logical reasoning
in a clean and modular way, learning complex distributions and restricting
their support to solutions of the constraint. As such, they can faithfully, and
efficiently, model complex SOP tasks beyond the reach of alternative
neuro-symbolic approaches. We empirically demonstrate that SPLs outperform
these competitors in terms of accuracy on challenging SOP tasks including
hierarchical multi-label classification, pathfinding and preference learning,
while retaining perfect constraint satisfaction.
Related papers
- Optimization Proxies using Limited Labeled Data and Training Time -- A Semi-Supervised Bayesian Neural Network Approach [2.943640991628177]
Constrained optimization problems arise in various engineering system operations such as inventory management electric power grids.
This work introduces a learning scheme using Bayesian Networks (BNNs) to solve constrained optimization problems under limited data and restricted model times.
We show that the proposed learning method outperforms conventional BNN and deep neural network (DNN) architectures.
arXiv Detail & Related papers (2024-10-04T02:10:20Z) - Directed Exploration in Reinforcement Learning from Linear Temporal Logic [59.707408697394534]
Linear temporal logic (LTL) is a powerful language for task specification in reinforcement learning.
We show that the synthesized reward signal remains fundamentally sparse, making exploration challenging.
We show how better exploration can be achieved by further leveraging the specification and casting its corresponding Limit Deterministic B"uchi Automaton (LDBA) as a Markov reward process.
arXiv Detail & Related papers (2024-08-18T14:25:44Z) - Neural Conditional Probability for Inference [22.951644463554352]
We introduce NCP (Neural Conditional Probability), a novel operator-theoretic approach for learning conditional distributions.
By tapping into the powerful approximation capabilities of neural networks, our method efficiently handles a wide variety of complex probability distributions.
Our experiments show that our approach matches or beats leading methods using a simple Multi-Layer Perceptron (MLP) with two hidden layers and GELU activations.
arXiv Detail & Related papers (2024-07-01T10:44:29Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
Large Language Models (LLMs) have shown promise as intelligent agents in interactive decision-making tasks.
We introduce Entropy-Regularized Token-level Policy Optimization (ETPO), an entropy-augmented RL method tailored for optimizing LLMs at the token level.
We assess the effectiveness of ETPO within a simulated environment that models data science code generation as a series of multi-step interactive tasks.
arXiv Detail & Related papers (2024-02-09T07:45:26Z) - dPASP: A Comprehensive Differentiable Probabilistic Answer Set
Programming Environment For Neurosymbolic Learning and Reasoning [0.0]
We present dPASP, a novel declarative logic programming framework for differentiable neuro-symbolic reasoning.
We discuss the several semantics for probabilistic logic programs that can express nondeterministic, contradictory, incomplete and/or statistical knowledge.
We then describe an implemented package that supports inference and learning in the language, along with several example programs.
arXiv Detail & Related papers (2023-08-05T19:36:58Z) - Scalable Neural-Probabilistic Answer Set Programming [18.136093815001423]
We introduce SLASH, a novel DPPL that consists of Neural-Probabilistic Predicates (NPPs) and a logic program, united via answer set programming (ASP)
We show how to prune the insignificantally insignificant parts of the (ground) program, speeding up reasoning without sacrificing the predictive performance.
We evaluate SLASH on a variety of different tasks, including the benchmark task of MNIST addition and Visual Question Answering (VQA)
arXiv Detail & Related papers (2023-06-14T09:45:29Z) - Semantic Strengthening of Neuro-Symbolic Learning [85.6195120593625]
Neuro-symbolic approaches typically resort to fuzzy approximations of a probabilistic objective.
We show how to compute this efficiently for tractable circuits.
We test our approach on three tasks: predicting a minimum-cost path in Warcraft, predicting a minimum-cost perfect matching, and solving Sudoku puzzles.
arXiv Detail & Related papers (2023-02-28T00:04:22Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
We take one of the simplest inference methods, a truncated max-product Belief propagation, and add what is necessary to make it a proper component of a deep learning model.
This BP-Layer can be used as the final or an intermediate block in convolutional neural networks (CNNs)
The model is applicable to a range of dense prediction problems, is well-trainable and provides parameter-efficient and robust solutions in stereo, optical flow and semantic segmentation.
arXiv Detail & Related papers (2020-03-13T13:11:35Z) - Local Propagation in Constraint-based Neural Network [77.37829055999238]
We study a constraint-based representation of neural network architectures.
We investigate a simple optimization procedure that is well suited to fulfil the so-called architectural constraints.
arXiv Detail & Related papers (2020-02-18T16:47:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.