Source-Free Domain Adaptation Guided by Vision and Vision-Language Pre-Training
- URL: http://arxiv.org/abs/2405.02954v3
- Date: Thu, 03 Oct 2024 14:25:07 GMT
- Title: Source-Free Domain Adaptation Guided by Vision and Vision-Language Pre-Training
- Authors: Wenyu Zhang, Li Shen, Chuan-Sheng Foo,
- Abstract summary: Source-free domain adaptation (SFDA) aims to adapt a source model trained on a fully-labeled source domain to a related but unlabeled target domain.
In the conventional SFDA pipeline, a large data (e.g. ImageNet) pre-trained feature extractor is used to initialize the source model.
We introduce an integrated framework to incorporate pre-trained networks into the target adaptation process.
- Score: 23.56208527227504
- License:
- Abstract: Source-free domain adaptation (SFDA) aims to adapt a source model trained on a fully-labeled source domain to a related but unlabeled target domain. While the source model is a key avenue for acquiring target pseudolabels, the generated pseudolabels may exhibit source bias. In the conventional SFDA pipeline, a large data (e.g. ImageNet) pre-trained feature extractor is used to initialize the source model at the start of source training, and subsequently discarded. Despite having diverse features important for generalization, the pre-trained feature extractor can overfit to the source data distribution during source training and forget relevant target domain knowledge. Rather than discarding this valuable knowledge, we introduce an integrated framework to incorporate pre-trained networks into the target adaptation process. The proposed framework is flexible and allows us to plug modern pre-trained networks into the adaptation process to leverage their stronger representation learning capabilities. For adaptation, we propose the Co-learn algorithm to improve target pseudolabel quality collaboratively through the source model and a pre-trained feature extractor. Building on the recent success of the vision-language model CLIP in zero-shot image recognition, we present an extension Co-learn++ to further incorporate CLIP's zero-shot classification decisions. We evaluate on 4 benchmark datasets and include more challenging scenarios such as open-set, partial-set and open-partial SFDA. Experimental results demonstrate that our proposed strategy improves adaptation performance and can be successfully integrated with existing SFDA methods. Project code is available at https://github.com/zwenyu/colearn-plus.
Related papers
- Learn from the Learnt: Source-Free Active Domain Adaptation via Contrastive Sampling and Visual Persistence [60.37934652213881]
Domain Adaptation (DA) facilitates knowledge transfer from a source domain to a related target domain.
This paper investigates a practical DA paradigm, namely Source data-Free Active Domain Adaptation (SFADA), where source data becomes inaccessible during adaptation.
We present learn from the learnt (LFTL), a novel paradigm for SFADA to leverage the learnt knowledge from the source pretrained model and actively iterated models without extra overhead.
arXiv Detail & Related papers (2024-07-26T17:51:58Z) - Memory-Efficient Pseudo-Labeling for Online Source-Free Universal Domain Adaptation using a Gaussian Mixture Model [3.1265626879839923]
In practice, domain shifts are likely to occur between training and test data, necessitating domain adaptation (DA) to adjust the pre-trained source model to the target domain.
UniDA has gained attention for addressing the possibility of an additional category (label) shift between the source and target domain.
We propose a novel method that continuously captures the distribution of known classes in the feature space using a Gaussian mixture model (GMM)
Our approach achieves state-of-the-art results in all experiments on the DomainNet and Office-Home datasets.
arXiv Detail & Related papers (2024-07-19T11:13:31Z) - Robust Source-Free Domain Adaptation for Fundus Image Segmentation [3.585032903685044]
Unlabelled Domain Adaptation (UDA) is a learning technique that transfers knowledge learned in the source domain from labelled data to the target domain with only unlabelled data.
In this study, we propose a two-stage training stage for robust domain adaptation.
We propose a novel robust pseudo-label and pseudo-boundary (PLPB) method, which effectively utilizes unlabeled target data to generate pseudo labels and pseudo boundaries.
arXiv Detail & Related papers (2023-10-25T14:25:18Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - Rethinking the Role of Pre-Trained Networks in Source-Free Domain
Adaptation [26.481422574715126]
Source-free domain adaptation (SFDA) aims to adapt a source model trained on a fully-labeled source domain to an unlabeled target domain.
Large-data pre-trained networks are used to initialize source models during source training, and subsequently discarded.
We propose to integrate the pre-trained network into the target adaptation process as it has diversified features important for generalization.
arXiv Detail & Related papers (2022-12-15T02:25:22Z) - Transformer-Based Source-Free Domain Adaptation [134.67078085569017]
We study the task of source-free domain adaptation (SFDA), where the source data are not available during target adaptation.
We propose a generic and effective framework based on Transformer, named TransDA, for learning a generalized model for SFDA.
arXiv Detail & Related papers (2021-05-28T23:06:26Z) - Source-Free Domain Adaptation for Semantic Segmentation [11.722728148523366]
Unsupervised Domain Adaptation (UDA) can tackle the challenge that convolutional neural network-based approaches for semantic segmentation heavily rely on the pixel-level annotated data.
We propose a source-free domain adaptation framework for semantic segmentation, namely SFDA, in which only a well-trained source model and an unlabeled target domain dataset are available for adaptation.
arXiv Detail & Related papers (2021-03-30T14:14:29Z) - Source Data-absent Unsupervised Domain Adaptation through Hypothesis
Transfer and Labeling Transfer [137.36099660616975]
Unsupervised adaptation adaptation (UDA) aims to transfer knowledge from a related but different well-labeled source domain to a new unlabeled target domain.
Most existing UDA methods require access to the source data, and thus are not applicable when the data are confidential and not shareable due to privacy concerns.
This paper aims to tackle a realistic setting with only a classification model available trained over, instead of accessing to the source data.
arXiv Detail & Related papers (2020-12-14T07:28:50Z) - Universal Source-Free Domain Adaptation [57.37520645827318]
We propose a novel two-stage learning process for domain adaptation.
In the Procurement stage, we aim to equip the model for future source-free deployment, assuming no prior knowledge of the upcoming category-gap and domain-shift.
In the Deployment stage, the goal is to design a unified adaptation algorithm capable of operating across a wide range of category-gaps.
arXiv Detail & Related papers (2020-04-09T07:26:20Z) - Do We Really Need to Access the Source Data? Source Hypothesis Transfer
for Unsupervised Domain Adaptation [102.67010690592011]
Unsupervised adaptationUDA (UDA) aims to leverage the knowledge learned from a labeled source dataset to solve similar tasks in a new unlabeled domain.
Prior UDA methods typically require to access the source data when learning to adapt the model.
This work tackles a practical setting where only a trained source model is available and how we can effectively utilize such a model without source data to solve UDA problems.
arXiv Detail & Related papers (2020-02-20T03:13:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.