AC-MAMBASEG: An adaptive convolution and Mamba-based architecture for enhanced skin lesion segmentation
- URL: http://arxiv.org/abs/2405.03011v1
- Date: Sun, 5 May 2024 17:37:50 GMT
- Title: AC-MAMBASEG: An adaptive convolution and Mamba-based architecture for enhanced skin lesion segmentation
- Authors: Viet-Thanh Nguyen, Van-Truong Pham, Thi-Thao Tran,
- Abstract summary: We propose a new model for skin lesion segmentation namely AC-MambaSeg.
AC-MambaSeg has the hybrid CNN-Mamba backbone, and integrates advanced components such as Attention Gate, and Selective Kernel Bottleneck.
Our model shows promising potential for improving computer-aided diagnosis systems and facilitating early detection and treatment of dermatological diseases.
- Score: 2.2448567386846916
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Skin lesion segmentation is a critical task in computer-aided diagnosis systems for dermatological diseases. Accurate segmentation of skin lesions from medical images is essential for early detection, diagnosis, and treatment planning. In this paper, we propose a new model for skin lesion segmentation namely AC-MambaSeg, an enhanced model that has the hybrid CNN-Mamba backbone, and integrates advanced components such as Convolutional Block Attention Module (CBAM), Attention Gate, and Selective Kernel Bottleneck. AC-MambaSeg leverages the Vision Mamba framework for efficient feature extraction, while CBAM and Selective Kernel Bottleneck enhance its ability to focus on informative regions and suppress background noise. We evaluate the performance of AC-MambaSeg on diverse datasets of skin lesion images including ISIC-2018 and PH2; then compare it against existing segmentation methods. Our model shows promising potential for improving computer-aided diagnosis systems and facilitating early detection and treatment of dermatological diseases. Our source code will be made available at: https://github.com/vietthanh2710/AC-MambaSeg.
Related papers
- PathSegDiff: Pathology Segmentation using Diffusion model representations [63.20694440934692]
We propose PathSegDiff, a novel approach for histopathology image segmentation that leverages Latent Diffusion Models (LDMs) as pre-trained featured extractors.
Our method utilizes a pathology-specific LDM, guided by a self-supervised encoder, to extract rich semantic information from H&E stained histopathology images.
Our experiments demonstrate significant improvements over traditional methods on the BCSS and GlaS datasets.
arXiv Detail & Related papers (2025-04-09T14:58:21Z) - ASP-VMUNet: Atrous Shifted Parallel Vision Mamba U-Net for Skin Lesion Segmentation [17.88432817400751]
This paper presents a novel skin lesion segmentation framework, the Atrous Shifted Parallel Vision Mamba UNet (ASP-VMUNet)
The framework integrates the efficient and scalable Mamba architecture to overcome limitations in traditional CNNs and computationally demanding Transformers.
Tested on four benchmark datasets, ASP-VMUNet demonstrates superior performance in skin lesion segmentation.
arXiv Detail & Related papers (2025-03-25T08:17:22Z) - TAFM-Net: A Novel Approach to Skin Lesion Segmentation Using Transformer Attention and Focal Modulation [0.0]
We develop TAFM-Net, an innovative model leveraging self-adaptive transformer attention (TA) and focal modulation (FM)
Our model integrates an EfficientNetV2B1 encoder, which employs TA to enhance spatial and channel-related saliency, while a densely connected decoder integrates FM within skip connections.
A novel dynamic loss function amalgamates region and boundary information, guiding effective model training.
arXiv Detail & Related papers (2024-11-26T16:18:48Z) - KAN-Mamba FusionNet: Redefining Medical Image Segmentation with Non-Linear Modeling [3.2971993272923443]
This research presents an innovative methodology that combines Kolmogorov-Arnold Networks (KAN) with an adapted Mamba layer for medical image segmentation.
The proposed KAN-Mamba FusionNet framework improves image segmentation by integrating attention-driven mechanisms with convolutional parallel training and autoregressive deployment.
arXiv Detail & Related papers (2024-11-18T09:19:16Z) - OCTAMamba: A State-Space Model Approach for Precision OCTA Vasculature Segmentation [10.365417594185685]
We propose OCTAMamba, a novel U-shaped network based on the Mamba architecture to segment vasculature in OCTA accurately.
OCTAMamba integrates a Quad Stream Efficient Mining Embedding Module for local feature extraction, a Multi-Scale Dilated Asymmetric Convolution Module to capture multi-scale vasculature, and a Focused Feature Recalibration Module to filter noise and highlight target areas.
Our method achieves efficient global modeling and local feature extraction while maintaining linear complexity, making it suitable for low-computation medical applications.
arXiv Detail & Related papers (2024-09-12T12:47:34Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Class Attention to Regions of Lesion for Imbalanced Medical Image
Recognition [59.28732531600606]
We propose a framework named textbfClass textbfAttention to textbfREgions of the lesion (CARE) to handle data imbalance issues.
The CARE framework needs bounding boxes to represent the lesion regions of rare diseases.
Results show that the CARE variants with automated bounding box generation are comparable to the original CARE framework.
arXiv Detail & Related papers (2023-07-19T15:19:02Z) - Generative Adversarial Networks based Skin Lesion Segmentation [7.9234173309439715]
We propose a novel adversarial learning-based framework called Efficient-GAN that uses an unsupervised generative network to generate accurate lesion masks.
It outperforms the current state-of-the-art skin lesion segmentation approaches with a Dice coefficient, Jaccard similarity, and Accuracy of 90.1%, 83.6%, and 94.5%, respectively.
We also design a lightweight segmentation framework (MGAN) that achieves comparable performance as EGAN but with an order of magnitude lower number of training parameters.
arXiv Detail & Related papers (2023-05-29T15:51:31Z) - LCAUnet: A skin lesion segmentation network with enhanced edge and body
fusion [4.819821513256158]
LCAUnet is proposed to improve the ability of complementary representation with fusion of edge and body features.
Experiments on public available dataset ISIC 2017, ISIC 2018, and PH2 demonstrate that LCAUnet outperforms most state-of-the-art methods.
arXiv Detail & Related papers (2023-05-01T14:05:53Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.