TAFM-Net: A Novel Approach to Skin Lesion Segmentation Using Transformer Attention and Focal Modulation
- URL: http://arxiv.org/abs/2411.17556v1
- Date: Tue, 26 Nov 2024 16:18:48 GMT
- Title: TAFM-Net: A Novel Approach to Skin Lesion Segmentation Using Transformer Attention and Focal Modulation
- Authors: Tariq M Khan, Dawn Lin, Shahzaib Iqbal, Eirk Meijering,
- Abstract summary: We develop TAFM-Net, an innovative model leveraging self-adaptive transformer attention (TA) and focal modulation (FM)
Our model integrates an EfficientNetV2B1 encoder, which employs TA to enhance spatial and channel-related saliency, while a densely connected decoder integrates FM within skip connections.
A novel dynamic loss function amalgamates region and boundary information, guiding effective model training.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Incorporating modern computer vision techniques into clinical protocols shows promise in improving skin lesion segmentation. The U-Net architecture has been a key model in this area, iteratively improved to address challenges arising from the heterogeneity of dermatologic images due to varying clinical settings, lighting, patient attributes, and hair density. To further improve skin lesion segmentation, we developed TAFM-Net, an innovative model leveraging self-adaptive transformer attention (TA) coupled with focal modulation (FM). Our model integrates an EfficientNetV2B1 encoder, which employs TA to enhance spatial and channel-related saliency, while a densely connected decoder integrates FM within skip connections, enhancing feature emphasis, segmentation performance, and interpretability crucial for medical image analysis. A novel dynamic loss function amalgamates region and boundary information, guiding effective model training. Our model achieves competitive performance, with Jaccard coefficients of 93.64\%, 86.88\% and 92.88\% in the ISIC2016, ISIC2017 and ISIC2018 datasets, respectively, demonstrating its potential in real-world scenarios.
Related papers
- Multi-Granularity Vision Fastformer with Fusion Mechanism for Skin Lesion Segmentation [7.944123371140182]
This research aims to optimize the balance between computational costs and long-range dependency modelling.
We propose a lightweight U-shape network that utilizes Vision Fastformer with Fusion Mechanism (VFFM-UNet)
arXiv Detail & Related papers (2025-04-04T01:27:43Z) - MAPUNetR: A Hybrid Vision Transformer and U-Net Architecture for Efficient and Interpretable Medical Image Segmentation [0.0]
We introduce MAPUNetR, a novel architecture that synergizes the strengths of transformer models with the proven U-Net framework for medical image segmentation.
Our model addresses the resolution preservation challenge and incorporates attention maps highlighting segmented regions, increasing accuracy and interpretability.
Our experiments show that the model maintains stable performance and potential as a powerful tool for medical image segmentation in clinical practice.
arXiv Detail & Related papers (2024-10-29T16:52:57Z) - TBConvL-Net: A Hybrid Deep Learning Architecture for Robust Medical Image Segmentation [6.013821375459473]
We introduce a novel deep learning architecture for medical image segmentation.
Our proposed model shows consistent improvement over the state of the art on ten publicly available datasets.
arXiv Detail & Related papers (2024-09-05T09:14:03Z) - CNN-Transformer Rectified Collaborative Learning for Medical Image Segmentation [60.08541107831459]
This paper proposes a CNN-Transformer rectified collaborative learning framework to learn stronger CNN-based and Transformer-based models for medical image segmentation.
Specifically, we propose a rectified logit-wise collaborative learning (RLCL) strategy which introduces the ground truth to adaptively select and rectify the wrong regions in student soft labels.
We also propose a class-aware feature-wise collaborative learning (CFCL) strategy to achieve effective knowledge transfer between CNN-based and Transformer-based models in the feature space.
arXiv Detail & Related papers (2024-08-25T01:27:35Z) - Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI [58.809276442508256]
We propose a hybrid network via the combination of convolution neural network (CNN) and transformer layers.
The experimental results on private and public DCE-MRI datasets demonstrate that the proposed hybrid network superior performance than the state-of-the-art methods.
arXiv Detail & Related papers (2024-08-11T15:46:00Z) - Optimizing Universal Lesion Segmentation: State Space Model-Guided Hierarchical Networks with Feature Importance Adjustment [0.0]
We introduce Mamba-Ahnet, a novel integration of State Space Model (SSM) and Advanced Hierarchical Network (AHNet) within the MAMBA framework.
Mamba-Ahnet combines SSM's feature extraction and comprehension with AHNet's attention mechanisms and image reconstruction, aiming to enhance segmentation accuracy and robustness.
arXiv Detail & Related papers (2024-04-26T08:15:43Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Inter-Scale Dependency Modeling for Skin Lesion Segmentation with
Transformer-based Networks [0.0]
Melanoma is a dangerous form of skin cancer caused by the abnormal growth of skin cells.
FCN approaches, including the U-Net architecture, can automatically segment skin lesions to aid diagnosis.
The symmetrical U-Net model has shown outstanding results, but its use of a convolutional operation limits its ability to capture long-range dependencies.
arXiv Detail & Related papers (2023-10-20T16:20:25Z) - DAT++: Spatially Dynamic Vision Transformer with Deformable Attention [87.41016963608067]
We present Deformable Attention Transformer ( DAT++), a vision backbone efficient and effective for visual recognition.
DAT++ achieves state-of-the-art results on various visual recognition benchmarks, with 85.9% ImageNet accuracy, 54.5 and 47.0 MS-COCO instance segmentation mAP, and 51.5 ADE20K semantic segmentation mIoU.
arXiv Detail & Related papers (2023-09-04T08:26:47Z) - ARHNet: Adaptive Region Harmonization for Lesion-aware Augmentation to
Improve Segmentation Performance [61.04246102067351]
We propose a foreground harmonization framework (ARHNet) to tackle intensity disparities and make synthetic images look more realistic.
We demonstrate the efficacy of our method in improving the segmentation performance using real and synthetic images.
arXiv Detail & Related papers (2023-07-02T10:39:29Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
We present a novel segmentation strategy, co-heterogenous and adaptive segmentation (CHASe)
We propose a versatile framework that fuses appearance based semi-supervision, mask based adversarial domain adaptation, and pseudo-labeling.
CHASe can further improve pathological liver mask Dice-Sorensen coefficients by ranges of $4.2% sim 9.4%$.
arXiv Detail & Related papers (2020-05-27T06:58:39Z) - Cascaded Context Enhancement Network for Automatic Skin Lesion
Segmentation [10.648218637920035]
We formulate a cascaded context enhancement neural network for automatic skin lesion segmentation.
A new context aggregation module with a gate-based information integration approach is proposed.
We evaluate our approach on four public skin dermoscopy image datasets.
arXiv Detail & Related papers (2020-04-17T08:25:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.