論文の概要: Finite-Time Convergence and Sample Complexity of Actor-Critic Multi-Objective Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2405.03082v1
- Date: Sun, 5 May 2024 23:52:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 15:14:27.618209
- Title: Finite-Time Convergence and Sample Complexity of Actor-Critic Multi-Objective Reinforcement Learning
- Title(参考訳): アクタークリティカル多目的強化学習における有限時間収束とサンプル複雑度
- Authors: Tianchen Zhou, FNU Hairi, Haibo Yang, Jia Liu, Tian Tong, Fan Yang, Michinari Momma, Yan Gao,
- Abstract要約: 本稿では多目的強化学習(MORL)問題に取り組む。
MOACと呼ばれる革新的なアクター批判アルゴリズムを導入し、競合する報酬信号間のトレードオフを反復的に行うことでポリシーを見出す。
- 参考スコア(独自算出の注目度): 20.491176017183044
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Reinforcement learning with multiple, potentially conflicting objectives is pervasive in real-world applications, while this problem remains theoretically under-explored. This paper tackles the multi-objective reinforcement learning (MORL) problem and introduces an innovative actor-critic algorithm named MOAC which finds a policy by iteratively making trade-offs among conflicting reward signals. Notably, we provide the first analysis of finite-time Pareto-stationary convergence and corresponding sample complexity in both discounted and average reward settings. Our approach has two salient features: (a) MOAC mitigates the cumulative estimation bias resulting from finding an optimal common gradient descent direction out of stochastic samples. This enables provable convergence rate and sample complexity guarantees independent of the number of objectives; (b) With proper momentum coefficient, MOAC initializes the weights of individual policy gradients using samples from the environment, instead of manual initialization. This enhances the practicality and robustness of our algorithm. Finally, experiments conducted on a real-world dataset validate the effectiveness of our proposed method.
- Abstract(参考訳): 複数の、潜在的に矛盾する目的を持つ強化学習は、現実の応用において広範に行われているが、この問題は理論的には未解明のままである。
本稿では、多目的強化学習(MORL)問題に取り組み、競合する報酬信号間のトレードオフを反復的に行うMOACという革新的なアクター批判アルゴリズムを提案する。
特に、ディスカウントと平均報酬設定の両方において、有限時間パレート定常収束と対応するサンプル複雑性を初めて解析する。
私たちのアプローチには2つの有能な特徴があります。
(a)MOACは確率的サンプルから最適な共通勾配降下方向を求めることにより累積推定バイアスを緩和する。
これにより、証明可能な収束率とサンプルの複雑さは、目的の個数とは無関係に保証される。
b) 適切な運動量係数を用いて,MOACは手動初期化ではなく,環境からのサンプルを用いて個別の政策勾配の重みを初期化する。
これにより,アルゴリズムの実用性と堅牢性が向上する。
最後に,実世界のデータセットを用いて実験を行い,提案手法の有効性を検証した。
関連論文リスト
- Multi-Agent Reinforcement Learning from Human Feedback: Data Coverage and Algorithmic Techniques [65.55451717632317]
我々は,MARLHF(Multi-Agent Reinforcement Learning from Human Feedback)について検討し,理論的基礎と実証的検証の両方について検討した。
我々は,このタスクを,一般ゲームにおける嗜好のみのオフラインデータセットからナッシュ均衡を識別するものとして定義する。
本研究は,MARLHFの多面的アプローチを基礎として,効果的な嗜好に基づくマルチエージェントシステムの実現を目指している。
論文 参考訳(メタデータ) (2024-09-01T13:14:41Z) - Approximate Global Convergence of Independent Learning in Multi-Agent Systems [19.958920582022664]
本稿では,Q$ラーニングとNatural Act-criticの2つの代表的なアルゴリズムについて,価値ベースのフレームワークとポリシーベースのフレームワークで検討する。
結果は、大域収束を達成する際のILの基本的な限界を特徴づけるエラー項まで、$tildemathcalO(epsilon-2)$のサンプル複雑性を示唆している。
論文 参考訳(メタデータ) (2024-05-30T08:20:34Z) - Distributionally Robust Reinforcement Learning with Interactive Data Collection: Fundamental Hardness and Near-Optimal Algorithm [14.517103323409307]
Sim-to-realのギャップは、トレーニングとテスト環境の相違を表している。
この課題に対処するための有望なアプローチは、分布的に堅牢なRLである。
我々は対話型データ収集によるロバストなRLに取り組み、証明可能なサンプル複雑性を保証するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-04-04T16:40:22Z) - Sample-Efficient Multi-Agent RL: An Optimization Perspective [103.35353196535544]
一般関数近似に基づく汎用マルコフゲーム(MG)のためのマルチエージェント強化学習(MARL)について検討した。
汎用MGに対するマルチエージェントデカップリング係数(MADC)と呼ばれる新しい複雑性尺度を導入する。
我々のアルゴリズムは既存の研究に匹敵するサブリニアな後悔を与えることを示す。
論文 参考訳(メタデータ) (2023-10-10T01:39:04Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
強化学習における3つの大きな課題は、大きな状態空間を持つ複雑な力学系、コストのかかるデータ取得プロセス、トレーニング環境の展開から現実の力学を逸脱させることである。
広範に用いられているKullback-Leibler, chi-square, および全変分不確実性集合の下で, 連続状態空間を持つ分布ロバストなマルコフ決定過程について検討した。
本稿では,ガウス過程と最大分散削減アルゴリズムを用いて,多出力名目遷移力学を効率的に学習するモデルベースアプローチを提案する。
論文 参考訳(メタデータ) (2023-09-05T13:42:11Z) - MDPGT: Momentum-based Decentralized Policy Gradient Tracking [29.22173174168708]
マルチエージェント強化学習のための運動量に基づく分散型ポリシー勾配追跡(MDPGT)を提案する。
MDPGTは、グローバル平均の$N$ローカルパフォーマンス関数の$epsilon-stationaryポイントに収束するために$mathcalO(N-1epsilon-3)$の最良のサンプル複雑性を実現する。
これは、分散モデルレス強化学習における最先端のサンプル複雑さよりも優れています。
論文 参考訳(メタデータ) (2021-12-06T06:55:51Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
高精度リコール曲線(AUPRC)に基づく領域の最適化について検討し,不均衡なタスクに広く利用されている。
我々は、$O (1/epsilon4)$のより優れた反復による、$epsilon$定常解を見つけるための新しい運動量法を開発する。
また,O(1/epsilon4)$と同じ複雑さを持つ適応手法の新たなファミリを設計し,実際により高速な収束を享受する。
論文 参考訳(メタデータ) (2021-07-02T16:21:52Z) - Doubly Robust Off-Policy Actor-Critic: Convergence and Optimality [131.45028999325797]
ディスカウント型MDPのための2倍堅牢なオフポリチックAC(DR-Off-PAC)を開発した。
DR-Off-PACは、俳優と批評家の両方が一定のステップで同時に更新される単一のタイムスケール構造を採用しています。
有限時間収束速度を研究し, dr-off-pac のサンプル複雑性を特徴とし, $epsilon$-accurate optimal policy を得る。
論文 参考訳(メタデータ) (2021-02-23T18:56:13Z) - A Nonparametric Off-Policy Policy Gradient [32.35604597324448]
強化学習(RL)アルゴリズムは、最近の顕著な成功にもかかわらず、高いサンプリング複雑性に悩まされている。
オフポリシーアルゴリズムの一般的なサンプル効率に基づいて構築する。
提案手法は,現状の政策勾配法よりもサンプル効率がよいことを示す。
論文 参考訳(メタデータ) (2020-01-08T10:13:08Z) - The Simulator: Understanding Adaptive Sampling in the
Moderate-Confidence Regime [52.38455827779212]
エミュレータと呼ばれる適応サンプリングを解析するための新しい手法を提案する。
適切なログファクタを組み込んだトップk問題の最初のインスタンスベースの下位境界を証明します。
我々の新しい分析は、後者の問題に対するこの種の最初のエミュレータであるベストアームとトップkの識別に、シンプルでほぼ最適であることを示した。
論文 参考訳(メタデータ) (2017-02-16T23:42:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。