論文の概要: Robot Air Hockey: A Manipulation Testbed for Robot Learning with Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2405.03113v1
- Date: Mon, 6 May 2024 02:13:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 15:04:42.781533
- Title: Robot Air Hockey: A Manipulation Testbed for Robot Learning with Reinforcement Learning
- Title(参考訳): ロボットエアホッケー:強化学習によるロボット学習のためのマニピュレーションテストベッド
- Authors: Caleb Chuck, Carl Qi, Michael J. Munje, Shuozhe Li, Max Rudolph, Chang Shi, Siddhant Agarwal, Harshit Sikchi, Abhinav Peri, Sarthak Dayal, Evan Kuo, Kavan Mehta, Anthony Wang, Peter Stone, Amy Zhang, Scott Niekum,
- Abstract要約: 本稿では,ロボットエアホッケーに基づく動的対話型RLテストベッドを提案する。
我々のテストベッドは、RL能力の様々な評価を可能にします。
ロボットのエアホッケーテストベッドは、3つのドメインでシミュレート・トゥ・リアル・トランスファーをサポートする。
- 参考スコア(独自算出の注目度): 34.055177769808914
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement Learning is a promising tool for learning complex policies even in fast-moving and object-interactive domains where human teleoperation or hard-coded policies might fail. To effectively reflect this challenging category of tasks, we introduce a dynamic, interactive RL testbed based on robot air hockey. By augmenting air hockey with a large family of tasks ranging from easy tasks like reaching, to challenging ones like pushing a block by hitting it with a puck, as well as goal-based and human-interactive tasks, our testbed allows a varied assessment of RL capabilities. The robot air hockey testbed also supports sim-to-real transfer with three domains: two simulators of increasing fidelity and a real robot system. Using a dataset of demonstration data gathered through two teleoperation systems: a virtualized control environment, and human shadowing, we assess the testbed with behavior cloning, offline RL, and RL from scratch.
- Abstract(参考訳): 強化学習(Reinforcement Learning)は、人間の遠隔操作やハードコードされたポリシーが失敗する可能性のある、高速かつオブジェクト指向なドメインにおいても、複雑なポリシーを学ぶための有望なツールである。
この課題を効果的に反映するために,ロボットエアホッケーに基づく動的対話型RLテストベッドを導入する。
エアホッケーを、手軽な作業から、パックで叩いてブロックを押したり、ゴールベースで人間と対話するタスクまで、多種多様なタスクで強化することで、我々のテストベッドはRL能力のさまざまな評価を可能にします。
ロボットのエアホッケーテストベッドは、3つのドメインでシミュレート・トゥ・リアル・トランスファーをサポートする。
仮想制御環境と人間のシャドーイングという2つの遠隔操作システムを通じて収集されたデモデータのデータセットを用いて,動作クローン,オフラインRL,RLをスクラッチから評価する。
関連論文リスト
- A Retrospective on the Robot Air Hockey Challenge: Benchmarking Robust, Reliable, and Safe Learning Techniques for Real-world Robotics [53.33976793493801]
私たちは、NeurIPS 2023カンファレンスでRobot Air Hockey Challengeを組織しました。
我々は、シム・トゥ・リアルギャップ、低レベルの制御問題、安全性問題、リアルタイム要件、実世界のデータの限られた可用性など、ロボット工学における実践的な課題に焦点を当てる。
その結果、学習に基づくアプローチと事前知識を組み合わせたソリューションは、実際のデプロイメントが困難である場合にデータのみに依存するソリューションよりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-11-08T17:20:47Z) - Learning Robot Soccer from Egocentric Vision with Deep Reinforcement Learning [17.906144781244336]
我々は,自己中心型RGBビジョンによる完全オンボード計算とセンシングにより,エンドツーエンドのロボットサッカーポリシーを訓練する。
本稿では,マルチエージェントロボットサッカーにおけるエンドツーエンドトレーニングの最初の実演を行う。
論文 参考訳(メタデータ) (2024-05-03T18:41:13Z) - Reinforcement Learning for Versatile, Dynamic, and Robust Bipedal Locomotion Control [106.32794844077534]
本稿では,二足歩行ロボットのための動的移動制御系を構築するために,深層強化学習を用いた研究について述べる。
本研究では、周期歩行やランニングから周期ジャンプや立位に至るまで、様々な動的二足歩行技術に使用できる汎用的な制御ソリューションを開発する。
この研究は、二足歩行ロボットの俊敏性の限界を、現実世界での広範な実験を通じて押し上げる。
論文 参考訳(メタデータ) (2024-01-30T10:48:43Z) - Real Robot Challenge 2022: Learning Dexterous Manipulation from Offline
Data in the Real World [38.54892412474853]
リアルロボットチャレンジ2022は、強化学習とロボティクスのコミュニティの間の橋として機能した。
我々は参加者に、提供された実ロボットデータセットからプッシュ、グリップ、手動の向きを含む2つの巧妙な操作タスクを学ぶように頼んだ。
大規模なソフトウェアドキュメンテーションと、実際のセットアップのシミュレーションに基づく初期ステージにより、競争は特にアクセスしやすくなった。
論文 参考訳(メタデータ) (2023-08-15T12:40:56Z) - HomeRobot: Open-Vocabulary Mobile Manipulation [107.05702777141178]
Open-Vocabulary Mobile Manipulation (OVMM) は、目に見えない環境で任意のオブジェクトを選択し、命令された場所に配置する問題である。
HomeRobotには2つのコンポーネントがある。シミュレーションコンポーネントは、新しい高品質のマルチルームホーム環境に、大規模で多様なキュレートされたオブジェクトセットを使用する。
論文 参考訳(メタデータ) (2023-06-20T14:30:32Z) - Stabilizing Contrastive RL: Techniques for Robotic Goal Reaching from
Offline Data [101.43350024175157]
自己指導型学習は、制御戦略を学ぶのに必要な人間のアノテーションとエンジニアリングの労力を減らす可能性がある。
我々の研究は、強化学習(RL)自体が自己監督的な問題であることを示す先行研究に基づいている。
コントラスト学習に基づく自己教師付きRLアルゴリズムは,実世界の画像に基づくロボット操作タスクを解くことができることを示す。
論文 参考訳(メタデータ) (2023-06-06T01:36:56Z) - Quality-Diversity Optimisation on a Physical Robot Through
Dynamics-Aware and Reset-Free Learning [4.260312058817663]
本研究では,リセットフリーQD(RF-QD)アルゴリズムを用いて,物理ロボット上で直接コントローラを学習する。
本手法は,ロボットと環境との相互作用から学習したダイナミクスモデルを用いて,ロボットの動作を予測する。
RF-QDには、ロボットが外を歩いたときに安全なゾーンに戻すリカバリポリシーも含まれており、継続的な学習を可能にしている。
論文 参考訳(メタデータ) (2023-04-24T13:24:00Z) - Bi-Manual Manipulation and Attachment via Sim-to-Real Reinforcement
Learning [23.164743388342803]
シミュレーションで訓練された強化学習を用いて,両手作業の解法について検討する。
また、RLポリシーの効果的なトレーニングにつながるシミュレーション環境の変更についても検討する。
本研究では,2つのロボットアームが磁気的接続点を持つ2つのブロックを拾い上げるための接続タスクを設計する。
論文 参考訳(メタデータ) (2022-03-15T21:49:20Z) - Accelerating Robotic Reinforcement Learning via Parameterized Action
Primitives [92.0321404272942]
強化学習は汎用ロボットシステムの構築に使用することができる。
しかし、ロボット工学の課題を解決するためにRLエージェントを訓練することは依然として困難である。
本研究では,ロボット行動プリミティブ(RAPS)のライブラリを手動で指定し,RLポリシーで学習した引数をパラメータ化する。
動作インターフェースへの簡単な変更は、学習効率とタスクパフォーマンスの両方を大幅に改善する。
論文 参考訳(メタデータ) (2021-10-28T17:59:30Z) - robo-gym -- An Open Source Toolkit for Distributed Deep Reinforcement
Learning on Real and Simulated Robots [0.5161531917413708]
本稿では,ロボットによる深層強化学習を向上するためのオープンソースのツールキット,robo-gymを提案する。
シミュレーションにおけるトレーニングからロボットへのシームレスな移動を可能にするシミュレーション環境と実環境の統一的なセットアップを実証する。
産業用ロボットを特徴とする2つの実世界アプリケーションを用いて,本フレームワークの能力と有効性を示す。
論文 参考訳(メタデータ) (2020-07-06T13:51:33Z) - Learning to Walk in the Real World with Minimal Human Effort [80.7342153519654]
我々は,人間の努力を最小限に抑えて,現実世界の深いRLを用いた足の移動ポリシーを学習するシステムを開発した。
人間の介入がほとんどないミニチュアロボットにおいて,ロボットの移動スキルを自動的かつ効率的に学習することができる。
論文 参考訳(メタデータ) (2020-02-20T03:36:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。