FOBNN: Fast Oblivious Binarized Neural Network Inference
- URL: http://arxiv.org/abs/2405.03136v1
- Date: Mon, 6 May 2024 03:12:36 GMT
- Title: FOBNN: Fast Oblivious Binarized Neural Network Inference
- Authors: Xin Chen, Zhili Chen, Benchang Dong, Shiwen Wei, Lin Chen, Daojing He,
- Abstract summary: We develop a fast oblivious binarized neural network inference framework, FOBNN.
Specifically, we customize binarized convolutional neural networks to enhance oblivious inference, design two fast algorithms for binarized convolutions, and optimize network structures experimentally under constrained costs.
- Score: 12.587981899648419
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The superior performance of deep learning has propelled the rise of Deep Learning as a Service, enabling users to transmit their private data to service providers for model execution and inference retrieval. Nevertheless, the primary concern remains safeguarding the confidentiality of sensitive user data while optimizing the efficiency of secure protocols. To address this, we develop a fast oblivious binarized neural network inference framework, FOBNN. Specifically, we customize binarized convolutional neural networks to enhance oblivious inference, design two fast algorithms for binarized convolutions, and optimize network structures experimentally under constrained costs. Initially, we meticulously analyze the range of intermediate values in binarized convolutions to minimize bit representation, resulting in the Bit Length Bounding (BLB) algorithm. Subsequently, leveraging the efficiency of bitwise operations in BLB, we further enhance performance by employing pure bitwise operations for each binary digit position, yielding the Layer-wise Bit Accumulation (LBA) algorithm. Theoretical analysis validates FOBNN's security and indicates up to $2 \times$ improvement in computational and communication costs compared to the state-of-the-art method. We demonstrates our framework's effectiveness in RNA function prediction within bioinformatics. Rigorous experimental assessments confirm that our oblivious inference solutions not only maintain but often exceed the original accuracy, surpassing prior efforts.
Related papers
- BiDense: Binarization for Dense Prediction [62.70804353158387]
BiDense is a generalized binary neural network (BNN) designed for efficient and accurate dense prediction tasks.
BiDense incorporates two key techniques: the Distribution-adaptive Binarizer (DAB) and the Channel-adaptive Full-precision Bypass (CFB)
arXiv Detail & Related papers (2024-11-15T16:46:04Z) - Compacting Binary Neural Networks by Sparse Kernel Selection [58.84313343190488]
This paper is motivated by a previously revealed phenomenon that the binary kernels in successful BNNs are nearly power-law distributed.
We develop the Permutation Straight-Through Estimator (PSTE) that is able to not only optimize the selection process end-to-end but also maintain the non-repetitive occupancy of selected codewords.
Experiments verify that our method reduces both the model size and bit-wise computational costs, and achieves accuracy improvements compared with state-of-the-art BNNs under comparable budgets.
arXiv Detail & Related papers (2023-03-25T13:53:02Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
We propose a new learning framework for neural networks, namely Cascaded Forward (CaFo) algorithm, which does not rely on BP optimization as that in FF.
Unlike FF, our framework directly outputs label distributions at each cascaded block, which does not require generation of additional negative samples.
In our framework each block can be trained independently, so it can be easily deployed into parallel acceleration systems.
arXiv Detail & Related papers (2023-03-17T02:01:11Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Recurrent Bilinear Optimization for Binary Neural Networks [58.972212365275595]
BNNs neglect the intrinsic bilinear relationship of real-valued weights and scale factors.
Our work is the first attempt to optimize BNNs from the bilinear perspective.
We obtain robust RBONNs, which show impressive performance over state-of-the-art BNNs on various models and datasets.
arXiv Detail & Related papers (2022-09-04T06:45:33Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - End-to-End Learning of Deep Kernel Acquisition Functions for Bayesian
Optimization [39.56814839510978]
We propose a meta-learning method for Bayesian optimization with neural network-based kernels.
Our model is trained by a reinforcement learning framework from multiple tasks.
In experiments using three text document datasets, we demonstrate that the proposed method achieves better BO performance than the existing methods.
arXiv Detail & Related papers (2021-11-01T00:42:31Z) - A Bop and Beyond: A Second Order Optimizer for Binarized Neural Networks [0.0]
optimization of Binary Neural Networks (BNNs) relies on approximating the real-valued weights with their binarized representations.
In this paper, we take an approach parallel to Adam which also uses the second raw moment estimate to normalize the first raw moment before doing the comparison with the threshold.
We present two versions of the proposed: a biased one and a bias-corrected one, each with its own applications.
arXiv Detail & Related papers (2021-04-11T22:20:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.