Automatic Ultrasound Curve Angle Measurement via Affinity Clustering for Adolescent Idiopathic Scoliosis Evaluation
- URL: http://arxiv.org/abs/2405.03141v2
- Date: Tue, 7 May 2024 03:21:18 GMT
- Title: Automatic Ultrasound Curve Angle Measurement via Affinity Clustering for Adolescent Idiopathic Scoliosis Evaluation
- Authors: Yihao Zhou, Timothy Tin-Yan Lee, Kelly Ka-Lee Lai, Chonglin Wu, Hin Ting Lau, De Yang, Chui-Yi Chan, Winnie Chiu-Wing Chu, Jack Chun-Yiu Cheng, Tsz-Ping Lam, Yong-Ping Zheng,
- Abstract summary: The current clinical gold standard for evaluating adolescent idiopathic scoliosis (AIS) is X-ray radiography, using Cobb angle measurement.
We introduce an estimation model for automatic ultrasound curve angle (UCA) measurement.
The model employs a dual-branch network to detect candidate landmarks and perform vertebra segmentation on ultrasound coronal images.
- Score: 1.9747854071595796
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The current clinical gold standard for evaluating adolescent idiopathic scoliosis (AIS) is X-ray radiography, using Cobb angle measurement. However, the frequent monitoring of the AIS progression using X-rays poses a challenge due to the cumulative radiation exposure. Although 3D ultrasound has been validated as a reliable and radiation-free alternative for scoliosis assessment, the process of measuring spinal curvature is still carried out manually. Consequently, there is a considerable demand for a fully automatic system that can locate bony landmarks and perform angle measurements. To this end, we introduce an estimation model for automatic ultrasound curve angle (UCA) measurement. The model employs a dual-branch network to detect candidate landmarks and perform vertebra segmentation on ultrasound coronal images. An affinity clustering strategy is utilized within the vertebral segmentation area to illustrate the affinity relationship between candidate landmarks. Subsequently, we can efficiently perform line delineation from a clustered affinity map for UCA measurement. As our method is specifically designed for UCA calculation, this method outperforms other state-of-the-art methods for landmark and line detection tasks. The high correlation between the automatic UCA and Cobb angle (R$^2$=0.858) suggests that our proposed method can potentially replace manual UCA measurement in ultrasound scoliosis assessment.
Related papers
- Class-Aware Cartilage Segmentation for Autonomous US-CT Registration in Robotic Intercostal Ultrasound Imaging [39.597735935731386]
A class-aware cartilage bone segmentation network with geometry-constraint post-processing is presented to capture patient-specific rib skeletons.
A dense skeleton graph-based non-rigid registration is presented to map the intercostal scanning path from a generic template to individual patients.
Results demonstrate that the proposed graph-based registration method can robustly and precisely map the path from CT template to individual patients.
arXiv Detail & Related papers (2024-06-06T14:15:15Z) - B-Spine: Learning B-Spline Curve Representation for Robust and
Interpretable Spinal Curvature Estimation [50.208310028625284]
We propose B-Spine, a novel deep learning pipeline to learn B-spline curve representation of the spine.
We estimate the Cobb angles for spinal curvature estimation from low-quality X-ray images.
arXiv Detail & Related papers (2023-10-14T15:34:57Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
endovascular surgeries are performed using the golden standard of Fluoroscopy, which uses ionising radiation to visualise catheters and vasculature.
This work proposes a solution using an adaptation of a state-of-the-art machine learning transformer architecture to detect and segment catheters in axial interventional Ultrasound image sequences.
arXiv Detail & Related papers (2023-09-25T19:34:12Z) - Thoracic Cartilage Ultrasound-CT Registration using Dense Skeleton Graph [49.11220791279602]
It is challenging to accurately map planned paths from a generic atlas to individual patients, particularly for thoracic applications.
A graph-based non-rigid registration is proposed to enable transferring planned paths from the atlas to the current setup.
arXiv Detail & Related papers (2023-07-07T18:57:21Z) - Development of Machine learning algorithms to identify the Cobb angle in
adolescents with idiopathic scoliosis based on lumbosacral joint efforts
during gait (Case study) [1.1199585259018454]
The aim of this study is to identify the Cobb angle by developing an automated radiation-free model.
The lumbosacral joint efforts during gait as radiation-free data are capable to identify the Cobb angle.
arXiv Detail & Related papers (2023-01-29T23:58:16Z) - Automatic spinal curvature measurement on ultrasound spine images using
Faster R-CNN [26.41810438716421]
The aim of this study is to construct a fully automatic framework based on Faster R-CNN for detecting vertebral lamina.
The framework consisted of two closely linked modules: 1) the lamina detector for identifying and locating each lamina pairs on ultrasound coronal images, and 2) the spinal curvature estimator for calculating the scoliotic angles.
arXiv Detail & Related papers (2022-04-17T12:09:29Z) - Follow the Curve: Robotic-Ultrasound Navigation with Learning Based
Localization of Spinous Processes for Scoliosis Assessment [1.7594269512136405]
This paper introduces a robotic-ultrasound approach for spinal curvature tracking and automatic navigation.
A fully connected network with deconvolutional heads is developed to locate the spinous process efficiently with real-time ultrasound images.
We developed a new force-driven controller that automatically adjusts the probe's pose relative to the skin surface to ensure a good acoustic coupling between the probe and skin.
arXiv Detail & Related papers (2021-09-11T06:25:30Z) - Automated Detection of Coronary Artery Stenosis in X-ray Angiography
using Deep Neural Networks [0.0]
We propose a two-step deep-learning framework to partially automate the detection of stenosis from X-ray coronary angiography images.
We achieved a 0.97 accuracy on the task of classifying the Left/Right Coronary Artery angle view and 0.68/0.73 recall on the determination of the regions of interest, for LCA and RCA, respectively.
arXiv Detail & Related papers (2021-03-04T11:45:54Z) - Assisted Probe Positioning for Ultrasound Guided Radiotherapy Using
Image Sequence Classification [55.96221340756895]
Effective transperineal ultrasound image guidance in prostate external beam radiotherapy requires consistent alignment between probe and prostate at each session during patient set-up.
We demonstrate a method for ensuring accurate probe placement through joint classification of images and probe position data.
Using a multi-input multi-task algorithm, spatial coordinate data from an optically tracked ultrasound probe is combined with an image clas-sifier using a recurrent neural network to generate two sets of predictions in real-time.
The algorithm identified optimal probe alignment within a mean (standard deviation) range of 3.7$circ$ (1.2$circ$) from
arXiv Detail & Related papers (2020-10-06T13:55:02Z) - A Convolutional Approach to Vertebrae Detection and Labelling in Whole
Spine MRI [70.04389979779195]
We propose a novel convolutional method for the detection and identification of vertebrae in whole spine MRIs.
This involves using a learnt vector field to group detected vertebrae corners together into individual vertebral bodies.
We demonstrate the clinical applicability of this method, using it for automated scoliosis detection in both lumbar and whole spine MR scans.
arXiv Detail & Related papers (2020-07-06T09:37:12Z) - Vertebra-Focused Landmark Detection for Scoliosis Assessment [54.24477530836629]
We propose a novel vertebra-focused landmark detection method.
Our model first localizes the vertebra centers, based on which it then traces the four corner landmarks of the vertebra through the learned corner offset.
Results demonstrate the merits of our method in both Cobb angle measurement and landmark detection on low-contrast and ambiguous X-ray images.
arXiv Detail & Related papers (2020-01-09T19:17:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.