Performance Upper Bound of Grover-Mixer Quantum Alternating Operator Ansatz
- URL: http://arxiv.org/abs/2405.03173v2
- Date: Fri, 24 May 2024 08:03:50 GMT
- Title: Performance Upper Bound of Grover-Mixer Quantum Alternating Operator Ansatz
- Authors: Ningyi Xie, Jiahua Xu, Tiejin Chen, Xinwei Lee, Yoshiyuki Saito, Nobuyoshi Asai, Dongsheng Cai,
- Abstract summary: The Quantum Alternating Operator Ansatz (QAOA) represents a branch of quantum algorithms for solving optimization problems.
A specific variant, the Grover-Mixer Quantum Alternating Operator Ansatz (GM-QAOA), ensures uniform amplitude across states that share equivalent objective values.
We show that the GM-QAOA provides a quadratic enhancement in sampling probability and requires circuit depth that scales exponentially with problem size to maintain consistent performance.
- Score: 3.5023108034606256
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Quantum Alternating Operator Ansatz (QAOA) represents a branch of quantum algorithms for solving combinatorial optimization problems. A specific variant, the Grover-Mixer Quantum Alternating Operator Ansatz (GM-QAOA), ensures uniform amplitude across states that share equivalent objective values. This property makes the algorithm independent of the problem structure, focusing instead on the distribution of objective values within the problem. In this work, we prove the probability upper bound for measuring a computational basis state from a GM-QAOA circuit with a given depth, which is a critical factor in QAOA cost. Using this, we derive the upper bounds for the probability of sampling an optimal solution, and for the approximation ratio of maximum optimization problems, both dependent on the objective value distribution. Through numerical analysis, we link the distribution to the problem size and build the regression models that relate the problem size, QAOA depth, and performance upper bound. Our results suggest that the GM-QAOA provides a quadratic enhancement in sampling probability and requires circuit depth that scales exponentially with problem size to maintain consistent performance.
Related papers
- MG-Net: Learn to Customize QAOA with Circuit Depth Awareness [51.78425545377329]
Quantum Approximate Optimization Algorithm (QAOA) and its variants exhibit immense potential in tackling optimization challenges.
The requisite circuit depth for satisfactory performance is problem-specific and often exceeds the maximum capability of current quantum devices.
We introduce the Mixer Generator Network (MG-Net), a unified deep learning framework adept at dynamically formulating optimal mixer Hamiltonians.
arXiv Detail & Related papers (2024-09-27T12:28:18Z) - An Analysis of Quantum Annealing Algorithms for Solving the Maximum Clique Problem [49.1574468325115]
We analyse the ability of quantum D-Wave annealers to find the maximum clique on a graph, expressed as a QUBO problem.
We propose a decomposition algorithm for the complementary maximum independent set problem, and a graph generation algorithm to control the number of nodes, the number of cliques, the density, the connectivity indices and the ratio of the solution size to the number of other nodes.
arXiv Detail & Related papers (2024-06-11T04:40:05Z) - Analytical results for the Quantum Alternating Operator Ansatz with Grover Mixer [0.0]
We introduce a statistical approach to analyze GM-QAOA that results in an analytical expression for the expectation value depending on the probability distribution associated with the problem Hamiltonian spectrum.
We extend the analysis to a more general context of QAOA with Grover mixer, which we called Grover-based QAOA.
arXiv Detail & Related papers (2024-01-19T23:17:08Z) - Variational quantum algorithm-preserving feasible space for solving the
uncapacitated facility location problem [3.3682090109106446]
We propose the Variational Quantum Algorithm-Preserving Feasible Space (VQA-PFS) ansatz.
This ansatz applies mixed operators on constrained variables while employing Hardware-Efficient Ansatz (HEA) on unconstrained variables.
The numerical results demonstrate that VQA-PFS significantly enhances the success probability and exhibits faster convergence.
arXiv Detail & Related papers (2023-12-12T01:36:49Z) - Problem-Size Independent Angles for a Grover-Driven Quantum Approximate
Optimization Algorithm [0.0]
We show that the calculation of the expectation of a problem Hamiltonian under a Grover-driven, QAOA-prepared state can be performed independently of system size.
Such calculations can help deliver insights into the performance of and predictability of angles in QAOA in the limit of large problem sizes.
arXiv Detail & Related papers (2022-08-22T17:18:25Z) - QAOA-in-QAOA: solving large-scale MaxCut problems on small quantum
machines [81.4597482536073]
Quantum approximate optimization algorithms (QAOAs) utilize the power of quantum machines and inherit the spirit of adiabatic evolution.
We propose QAOA-in-QAOA ($textQAOA2$) to solve arbitrary large-scale MaxCut problems using quantum machines.
Our method can be seamlessly embedded into other advanced strategies to enhance the capability of QAOAs in large-scale optimization problems.
arXiv Detail & Related papers (2022-05-24T03:49:10Z) - Numerical Evidence for Exponential Speed-up of QAOA over Unstructured
Search for Approximate Constrained Optimization [0.0]
We present evidence for an exponential speed-up of QAOA over Grover-style unstructured search.
Our result suggests that maximizing QAOA performance requires a judicious choice of mixer and phase separator.
arXiv Detail & Related papers (2022-02-01T18:39:52Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
We quantify scaling of the expected resource requirements by optimized circuits for hardware architectures with varying levels of connectivity.
We show the number of measurements, and hence total time to synthesizing solution, grows exponentially in problem size and problem graph degree.
These problems may be alleviated by increasing hardware connectivity or by recently proposed modifications to the QAOA that achieve higher performance with fewer circuit layers.
arXiv Detail & Related papers (2022-01-06T21:02:30Z) - Quantum Approximate Optimization Algorithm Based Maximum Likelihood
Detection [80.28858481461418]
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices.
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices.
arXiv Detail & Related papers (2021-07-11T10:56:24Z) - Q-Match: Iterative Shape Matching via Quantum Annealing [64.74942589569596]
Finding shape correspondences can be formulated as an NP-hard quadratic assignment problem (QAP)
This paper proposes Q-Match, a new iterative quantum method for QAPs inspired by the alpha-expansion algorithm.
Q-Match can be applied for shape matching problems iteratively, on a subset of well-chosen correspondences, allowing us to scale to real-world problems.
arXiv Detail & Related papers (2021-05-06T17:59:38Z) - Empirical performance bounds for quantum approximate optimization [0.27998963147546135]
Quantifying performance bounds provides insight into when QAOA may be viable for solving real-world applications.
We find QAOA exceeds the Goemans-Williamson approximation ratio bound for most graphs.
The resulting data set is presented as a benchmark for establishing empirical bounds on QAOA performance.
arXiv Detail & Related papers (2021-02-12T23:12:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.