論文の概要: Vietnamese AI Generated Text Detection
- arxiv url: http://arxiv.org/abs/2405.03206v1
- Date: Mon, 6 May 2024 07:12:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 14:35:25.577759
- Title: Vietnamese AI Generated Text Detection
- Title(参考訳): ベトナムのAIによるテキスト検出
- Authors: Quang-Dan Tran, Van-Quan Nguyen, Quang-Huy Pham, K. B. Thang Nguyen, Trong-Hop Do,
- Abstract要約: 我々は、ベトナムのエッセイの6.800のサンプルと、人間によって書かれた3.400のサンプルと、AIによって生成された残りのサンプルからなるViDetectというデータセットを提示する。
ViT5, BartPho, PhoBERT, mDeberta V3, mBERTなどの最先端手法を用いて評価を行った。
この研究は、AIによるテキスト検出の今後の進歩の基礎を定め、自然言語処理分野の研究者に貴重な洞察を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In recent years, Large Language Models (LLMs) have become integrated into our daily lives, serving as invaluable assistants in completing tasks. Widely embraced by users, the abuse of LLMs is inevitable, particularly in using them to generate text content for various purposes, leading to difficulties in distinguishing between text generated by LLMs and that written by humans. In this study, we present a dataset named ViDetect, comprising 6.800 samples of Vietnamese essay, with 3.400 samples authored by humans and the remainder generated by LLMs, serving the purpose of detecting text generated by AI. We conducted evaluations using state-of-the-art methods, including ViT5, BartPho, PhoBERT, mDeberta V3, and mBERT. These results contribute not only to the growing body of research on detecting text generated by AI but also demonstrate the adaptability and effectiveness of different methods in the Vietnamese language context. This research lays the foundation for future advancements in AI-generated text detection and provides valuable insights for researchers in the field of natural language processing.
- Abstract(参考訳): 近年,Large Language Models (LLMs) が私たちの日常生活に統合され,タスクの完了に有用なアシスタントとして機能している。
ユーザによって広く受け入れられているLLMの悪用は、特に様々な目的のためにテキストコンテンツを生成する際に必然的であり、LLMが生成したテキストと人間によって書かれたテキストとを区別することが困難である。
本研究では、ベトナム語エッセイの6.800サンプルと、人間によって書かれた3.400サンプルと、LLMによって生成された残りの3.400サンプルからなるViDetectというデータセットを、AIによって生成されたテキストを検出する目的で提示する。
ViT5, BartPho, PhoBERT, mDeberta V3, mBERTなどの最先端手法を用いて評価を行った。
これらの結果は、AIが生成するテキストの検出に関する研究の活発化に寄与するだけでなく、ベトナム語の文脈における異なる手法の適応性と有効性も示している。
この研究は、AIによるテキスト検出の今後の進歩の基礎を定め、自然言語処理分野の研究者に貴重な洞察を提供する。
関連論文リスト
- Who Writes the Review, Human or AI? [0.36498648388765503]
本研究では,AIによる書評と人間による書評を正確に区別する手法を提案する。
提案手法は移動学習を利用して,異なるトピック間で生成したテキストを識別する。
実験の結果、元のテキストのソースを検出でき、精度96.86%に達することが示されている。
論文 参考訳(メタデータ) (2024-05-30T17:38:44Z) - Spotting AI's Touch: Identifying LLM-Paraphrased Spans in Text [61.22649031769564]
我々は、新しいフレームワーク、パラフレーズテキストスパン検出(PTD)を提案する。
PTDは、テキスト内でパラフレーズ付きテキストを識別することを目的としている。
パラフレーズ付きテキストスパン検出のための専用データセットであるPASTEDを構築した。
論文 参考訳(メタデータ) (2024-05-21T11:22:27Z) - RFBES at SemEval-2024 Task 8: Investigating Syntactic and Semantic
Features for Distinguishing AI-Generated and Human-Written Texts [0.8437187555622164]
本稿では、意味論と構文という2つの異なる側面からAIが生成するテキスト検出の問題について考察する。
マルチリンガルタスクとモノリンガルタスクの両方において,AI生成テキストと人書きテキストを高い精度で区別できるAIモデルを提案する。
論文 参考訳(メタデータ) (2024-02-19T00:40:17Z) - Generative AI Text Classification using Ensemble LLM Approaches [0.12483023446237698]
大規模言語モデル(LLM)は、さまざまなAIや自然言語処理タスクで素晴らしいパフォーマンスを示している。
本研究では,異なる学習済みLLMから確率を生成するアンサンブルニューラルモデルを提案する。
AIと人間の生成したテキストを区別する最初のタスクとして、私たちのモデルは第5位と第13位にランクされた。
論文 参考訳(メタデータ) (2023-09-14T14:41:46Z) - The Imitation Game: Detecting Human and AI-Generated Texts in the Era of
ChatGPT and BARD [3.2228025627337864]
異なるジャンルの人文・AI生成テキストのデータセットを新たに導入する。
テキストを分類するために、いくつかの機械学習モデルを使用します。
結果は、人間とAIが生成したテキストを識別する上で、これらのモデルの有効性を示す。
論文 参考訳(メタデータ) (2023-07-22T21:00:14Z) - DNA-GPT: Divergent N-Gram Analysis for Training-Free Detection of
GPT-Generated Text [82.5469544192645]
ダイバージェントN-Gram解析(DNA-GPT)と呼ばれる新しいトレーニング不要検出手法を提案する。
元の部分と新しい部分の違いをN-gram解析により解析することにより,機械生成テキストと人文テキストの分布に顕著な相違が明らかになった。
その結果, ゼロショットアプローチは, 人文とGPT生成テキストの区別において, 最先端の性能を示すことがわかった。
論文 参考訳(メタデータ) (2023-05-27T03:58:29Z) - MAGE: Machine-generated Text Detection in the Wild [82.70561073277801]
大規模言語モデル(LLM)は人間レベルのテキスト生成を実現し、効果的なAI生成テキスト検出の必要性を強調している。
我々は、異なるLLMによって生成される多様な人文やテキストからテキストを収集することで、包括的なテストベッドを構築する。
問題にもかかわらず、トップパフォーマンス検出器は、新しいLCMによって生成された86.54%のドメイン外のテキストを識別することができ、アプリケーションシナリオの実現可能性を示している。
論文 参考訳(メタデータ) (2023-05-22T17:13:29Z) - On the Possibilities of AI-Generated Text Detection [76.55825911221434]
機械が生成するテキストが人間に近い品質を近似するにつれて、検出に必要なサンプルサイズが増大すると主張している。
GPT-2, GPT-3.5-Turbo, Llama, Llama-2-13B-Chat-HF, Llama-2-70B-Chat-HFなどの最先端テキストジェネレータをoBERTa-Large/Base-Detector, GPTZeroなどの検出器に対して試験した。
論文 参考訳(メタデータ) (2023-04-10T17:47:39Z) - Paraphrasing evades detectors of AI-generated text, but retrieval is an
effective defense [56.077252790310176]
本稿では,パラフレーズ生成モデル(DIPPER)を提案する。
DIPPERを使って3つの大きな言語モデル(GPT3.5-davinci-003)で生成されたテキストを言い換えると、透かしを含むいくつかの検出器を回避できた。
我々は,言語モデルAPIプロバイダによって維持されなければならない,意味論的に類似した世代を検索するシンプルなディフェンスを導入する。
論文 参考訳(メタデータ) (2023-03-23T16:29:27Z) - A Survey of Pretrained Language Models Based Text Generation [97.64625999380425]
テキスト生成は、入力データから人間の言語で可読で読みやすいテキストを生成することを目的としている。
ディープラーニングは、ニューラルジェネレーションモデル、特に事前学習言語モデル(PLM)のパラダイムにより、この分野を大幅に進歩させた。
PLM上でのテキスト生成は、学術と産業の両方において有望な方向と見なされている。
論文 参考訳(メタデータ) (2022-01-14T01:44:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。