論文の概要: Elevator, Escalator or Neither? Classifying Pedestrian Conveyor State Using Inertial Navigation System
- arxiv url: http://arxiv.org/abs/2405.03218v1
- Date: Mon, 6 May 2024 07:27:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 14:35:25.569518
- Title: Elevator, Escalator or Neither? Classifying Pedestrian Conveyor State Using Inertial Navigation System
- Title(参考訳): エレベータ、エスカレーター、その他?慣性航法システムを用いた歩行者コンベヤ状態の分類
- Authors: Tianlang He, Zhiqiu Xia, S. -H. Gary Chan,
- Abstract要約: 歩行者を「エスカレーター」と「エスカレーター」の3つのコンベア状態の1つに分類することは、屋内のローカライゼーションや人フロー分析といった多くの応用に不可欠である。
携帯電話から採取した加速度計,ジャイロスコープ,磁力計の慣性航法システム(INS)の読みから,初めて歩行者コンベア状態を推定した。
歩行者がエレベーターやエスカレーターにいるかどうかを分類するための,新しい,効果的で軽量なINSベースのディープラーニング手法であるELESONを提案する。
- 参考スコア(独自算出の注目度): 12.796931853596902
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Classifying a pedestrian in one of the three conveyor states of "elevator," "escalator" and "neither" is fundamental to many applications such as indoor localization and people flow analysis. We estimate, for the first time, the pedestrian conveyor state given the inertial navigation system (INS) readings of accelerometer, gyroscope and magnetometer sampled from the phone. Our problem is challenging because the INS signals of the conveyor state are coupled and perturbed by unpredictable arbitrary human actions, confusing the decision process. We propose ELESON, a novel, effective and lightweight INS-based deep learning approach to classify whether a pedestrian is in an elevator, escalator or neither. ELESON utilizes a motion feature extractor to decouple the conveyor state from human action in the feature space, and a magnetic feature extractor to account for the speed difference between elevator and escalator. Given the results of the extractors, it employs an evidential state classifier to estimate the confidence of the pedestrian states. Based on extensive experiments conducted on twenty hours of real pedestrian data, we demonstrate that ELESON outperforms significantly the state-of-the-art approaches (where combined INS signals of both the conveyor state and human actions are processed together), with 15% classification improvement in F1 score, stronger confidence discriminability with 10% increase in AUROC (Area Under the Receiver Operating Characteristics), and low computational and memory requirements on smartphones.
- Abstract(参考訳): 歩行者を「エスカレーター」と「エスカレーター」の3つのコンベア状態の1つに分類することは、屋内のローカライゼーションや人フロー分析といった多くの応用に不可欠である。
携帯電話から採取した加速度計,ジャイロスコープ,磁力計の慣性航法システム(INS)の読みから,初めて歩行者コンベア状態を推定した。
コンベア状態のINS信号は予測不能な任意の人間の行動によって結合・摂動され、決定過程を混乱させるため、この問題は困難である。
歩行者がエレベーターやエスカレーターにいるかどうかを分類するための,新しい,効果的で軽量なINSベースのディープラーニング手法であるELESONを提案する。
ELESONは、この特徴空間における人間の作用からコンベア状態を分離する運動特徴抽出器と、エレベータとエスカレーターの速度差を考慮に入れた磁気特徴抽出器とを用いる。
抽出器の結果から、歩行者状態の信頼度を推定するために明らかな状態分類器を用いる。
20時間にわたる実歩行者データを用いた大規模な実験の結果、ELESONは、コンベア状態と人的行動の両方のINS信号が同時に処理される)、F1スコアの15%の分類改善、AUROC(Area Under the Receiver Operating Characteristics)の10%増加による信頼性識別性の向上、スマートフォンにおける計算およびメモリ要件の低下など、最先端のアプローチを著しく上回ることを示した。
関連論文リスト
- TransFuser: Imitation with Transformer-Based Sensor Fusion for
Autonomous Driving [46.409930329699336]
本稿では,自己注意を用いた画像とLiDAR表現の統合機構であるTransFuserを提案する。
提案手法では,複数解像度のトランスフォーマーモジュールを用いて視線と鳥の視線の特徴マップを融合する。
我々は、CARLA都市運転シミュレータの公式リーダーボードと同様に、長いルートと密集した交通量を持つ挑戦的な新しいベンチマークにおいて、その効果を実験的に検証した。
論文 参考訳(メタデータ) (2022-05-31T17:57:19Z) - Pedestrian Stop and Go Forecasting with Hybrid Feature Fusion [87.77727495366702]
歩行者の立ち止まりと予測の新たな課題を紹介します。
都市交通における歩行者の立ち寄り行動を明示的に研究するためのベンチマークであるTransをリリースする。
歩行者の歩行動作に注釈を付けたいくつかの既存のデータセットから構築し、さまざまなシナリオや行動を実現する。
論文 参考訳(メタデータ) (2022-03-04T18:39:31Z) - A Machine Learning Smartphone-based Sensing for Driver Behavior
Classification [1.552282932199974]
我々は,速度,加速度,方向,3軸回転角(ヨー,ピッチ,ロール)を用いて運転者の動作を分類するために,スマートフォンで利用可能なデータセンサ(加速度計,ジャイロスコープ,GPS)を収集することを提案する。
第2に、複数のセンサからの軸間データを単一のファイルに融合した後、時系列分類のための異なる機械学習アルゴリズムを探索し、どのアルゴリズムが最も性能が高いかを評価する。
論文 参考訳(メタデータ) (2022-02-01T10:12:36Z) - Pedestrian Detection: Domain Generalization, CNNs, Transformers and
Beyond [82.37430109152383]
その結果、現在の歩行者検知器は、クロスデータセット評価において、たとえ小さな領域シフトであっても処理が不十分であることがわかった。
限定的な一般化は、その方法と現在のデータ源の2つの主要な要因に帰着する。
本稿では、一般化を改善する進歩的な微調整戦略を提案する。
論文 参考訳(メタデータ) (2022-01-10T06:00:26Z) - Pedestrian Trajectory Prediction via Spatial Interaction Transformer
Network [7.150832716115448]
交通現場では、来るべき人々と出会うと、歩行者は突然回転したり、すぐに止まることがある。
このような予測不可能な軌道を予測するために、歩行者間の相互作用についての洞察を得ることができる。
本稿では,歩行者軌跡の相関関係を注意機構を用いて学習する空間的相互作用変換器(SIT)を提案する。
論文 参考訳(メタデータ) (2021-12-13T13:08:04Z) - Learning-Based UE Classification in Millimeter-Wave Cellular Systems
With Mobility [67.81523988596841]
ミリ波携帯電話通信では、送信機と受信機のビームのアライメントを可能にするビームフォーミング手順が必要である。
効率的なビームトラッキングでは、トラフィックと移動パターンに応じてユーザーを分類することが有利である。
これまでの研究は、機械学習に基づくUE分類の効率的な方法を示してきた。
論文 参考訳(メタデータ) (2021-09-13T12:00:45Z) - Benchmarking high-fidelity pedestrian tracking systems for research,
real-time monitoring and crowd control [55.41644538483948]
実生活環境における高忠実な歩行者追跡は,群集動態研究において重要なツールである。
この技術が進歩するにつれて、社会においても益々有用になってきている。
歩行者追跡技術の研究と技術に成功させるためには、正確さの検証とベンチマークが不可欠である。
我々は、プライバシーに配慮した歩行者追跡技術のためのベンチマークスイートをコミュニティのオープンスタンダードに向けて提示し、議論する。
論文 参考訳(メタデータ) (2021-08-26T11:45:26Z) - Pedestrian Motion State Estimation From 2D Pose [3.189006905282788]
歩行者の交通違反やフレキシブルで変化しやすい性質は、歩行者の行動や意図を予測するのを難しくする。
歩行者運動状態やその他の影響要因と組み合わせることで、不要な事故を避けるために歩行者の意図を予測することができる。
本稿では,提案アルゴリズムをJAAD公開データセット上で検証し,既存の手法と比較して精度を11.6%向上させる。
論文 参考訳(メタデータ) (2021-02-27T07:00:06Z) - Abnormal activity capture from passenger flow of elevator based on
unsupervised learning and fine-grained multi-label recognition [18.166284261575473]
本稿では,多層住宅におけるエレベータの利用者フローを通じて,住民の異常活動の把握を目的とした作業フローを提案する。
エレベーターには、カメラとセンサー(ホールセンサー、光電センサー、ジャイロ、加速度計、気圧計、温度計)が取り付けられ、画像とデータを収集する。
エレベータの乗客フローを一般化するために, インスタンスセグメンテーション, マルチラベル認識, 埋め込み, クラスタリングなどのコンピュータビジョンアルゴリズムを適用した。
論文 参考訳(メタデータ) (2020-06-29T08:50:20Z) - Generalizable Pedestrian Detection: The Elephant In The Room [82.37430109152383]
既存の最先端の歩行者検出器は、同じデータセット上でトレーニングやテストを行う際には、非常によく機能するが、データセット間の評価では、十分に一般化されていない。
ウェブをクロールすることで収集される多様で高密度なデータセットは、歩行者検出のための事前学習の効率的な情報源であることを示す。
論文 参考訳(メタデータ) (2020-03-19T14:14:52Z) - Learning by Cheating [72.9701333689606]
この難解な学習問題を2段階に分解することで単純化できることを示す。
提案手法を用いて、視覚に基づく自律運転システムの訓練を行い、芸術の状況を大幅に上回っている。
提案手法は,従来のCARLAベンチマークのすべてのタスクにおける100%の成功率を初めて達成し,NoCrashベンチマークに新しい記録を樹立し,従来の技術と比較すると,屈折率を桁違いに低減する。
論文 参考訳(メタデータ) (2019-12-27T18:59:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。