論文の概要: Enhancing Spatiotemporal Disease Progression Models via Latent Diffusion and Prior Knowledge
- arxiv url: http://arxiv.org/abs/2405.03328v1
- Date: Mon, 6 May 2024 10:07:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 14:15:50.969087
- Title: Enhancing Spatiotemporal Disease Progression Models via Latent Diffusion and Prior Knowledge
- Title(参考訳): 潜時拡散と事前知識による時空間疾患進行モデルの強化
- Authors: Lemuel Puglisi, Daniel C. Alexander, Daniele Ravì,
- Abstract要約: 本稿では,潜伏拡散に基づく時間的疾患モデルであるBrain LaLAS(BrLP)を紹介する。
BrLPは3D脳の進行MRIで個々のレベルでの疾患の進化を予測するように設計されている。
- 参考スコア(独自算出の注目度): 2.7853513988338108
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we introduce Brain Latent Progression (BrLP), a novel spatiotemporal disease progression model based on latent diffusion. BrLP is designed to predict the evolution of diseases at the individual level on 3D brain MRIs. Existing deep generative models developed for this task are primarily data-driven and face challenges in learning disease progressions. BrLP addresses these challenges by incorporating prior knowledge from disease models to enhance the accuracy of predictions. To implement this, we propose to integrate an auxiliary model that infers volumetric changes in various brain regions. Additionally, we introduce Latent Average Stabilization (LAS), a novel technique to improve spatiotemporal consistency of the predicted progression. BrLP is trained and evaluated on a large dataset comprising 11,730 T1-weighted brain MRIs from 2,805 subjects, collected from three publicly available, longitudinal Alzheimer's Disease (AD) studies. In our experiments, we compare the MRI scans generated by BrLP with the actual follow-up MRIs available from the subjects, in both cross-sectional and longitudinal settings. BrLP demonstrates significant improvements over existing methods, with an increase of 22% in volumetric accuracy across AD-related brain regions and 43% in image similarity to the ground-truth scans. The ability of BrLP to generate conditioned 3D scans at the subject level, along with the novelty of integrating prior knowledge to enhance accuracy, represents a significant advancement in disease progression modeling, opening new avenues for precision medicine. The code of BrLP is available at the following link: https://github.com/LemuelPuglisi/BrLP.
- Abstract(参考訳): 本稿では,潜伏拡散に基づく新しい時空間疾患進行モデルであるBrain Latent Progression (BrLP)を紹介する。
BrLPは、個々のレベルでの病気の進化を3D脳MRIで予測するように設計されている。
このタスクのために開発された既存の深層生成モデルは、主にデータ駆動であり、疾患の進行を学習する際の課題に直面している。
BrLPは、予測の精度を高めるために、疾患モデルからの事前の知識を取り入れることで、これらの課題に対処する。
そこで本研究では,脳領域の容積変化を推定する補助モデルを提案する。
さらに,予測進行の時空間整合性を改善する新しい手法であるLatent Average Stabilization (LAS)を導入する。
BrLPは、2,805名の被験者から11,730個のT1強調脳MRIからなる大規模なデータセットでトレーニングされ、評価されている。
実験では, BrLPが生成したMRIスキャンと被験者から取得した実際の追跡MRIとを, 横断的, 縦断的に比較した。
BrLPは既存の手法よりも大幅に改善され、AD関連脳領域における体積精度は22%、画像類似度は43%向上した。
BrLPが被験者レベルで条件付き3Dスキャンを生成する能力と、精度を高めるために事前知識を統合することの新規性は、疾患進行モデリングの著しい進歩を示し、精密医療のための新たな道を開いた。
BrLPのコードは https://github.com/LemuelPuglisi/BrLP のリンクで公開されている。
関連論文リスト
- Brain Latent Progression: Individual-based Spatiotemporal Disease Progression on 3D Brain MRIs via Latent Diffusion [2.7853513988338108]
進行脳潜時モデル(BrLP)は3次元脳MRIで個々の疾患レベルの進行を予測するように設計されている。
BrLPを2,805例のT1強調(T1w)脳MRIで訓練し,962例の2,257例の外部MRIでその一般化性を検証した。
論文 参考訳(メタデータ) (2025-02-12T16:47:41Z) - Enhancing Brain Age Estimation with a Multimodal 3D CNN Approach Combining Structural MRI and AI-Synthesized Cerebral Blood Volume Data [14.815462507141163]
脳年齢ギャップ推定(BrainAGE)は、脳年齢を理解するための神経画像バイオマーカーである。
現在のアプローチでは、主にT1強調MRI(T1w MRI)データを使用し、構造脳情報のみをキャプチャする。
我々は,VGGに基づくアーキテクチャを用いたディープラーニングモデルを開発し,線形回帰を用いた予測を組み合わせた。
我々のモデルは3.95年の平均絶対誤差(MAE)とテストセットの$R2$ 0.943を達成し、類似したデータでトレーニングされた既存のモデルよりも優れていた。
論文 参考訳(メタデータ) (2024-12-01T21:54:08Z) - Time-to-Event Pretraining for 3D Medical Imaging [44.46415168541444]
本稿では,3次元医用画像モデルのための事前トレーニングフレームワークである,時間とイベントの事前トレーニングを紹介する。
我々は18,945個のCTスキャン(420万枚の2D画像)のデータセットと、何千ものEHR由来のタスクにまたがる時間-時間分布を用いています。
提案手法は,AUROCの平均値が23.7%,HarrellのC-インデックスが29.4%向上し,結果予測が向上する。
論文 参考訳(メタデータ) (2024-11-14T11:08:54Z) - TADM: Temporally-Aware Diffusion Model for Neurodegenerative Progression on Brain MRI [4.414541804340033]
時間的認識拡散モデル(TADM)は,スキャン間の強度差による構造変化の分布を学習する。
トレーニング中、モデルのトレーニングプロセスを洗練するために、トレーニング済みのBrain-Age Estimator(BAE)を活用することを提案する。
我々のアプローチは、患者の結果を予測したり、患者に対する治療を改善するといった応用に役立ちます。
論文 参考訳(メタデータ) (2024-06-18T09:00:49Z) - LoCI-DiffCom: Longitudinal Consistency-Informed Diffusion Model for 3D Infant Brain Image Completion [45.361733575664886]
乳児の脳画像補完のための新しい長周期インフォームド拡散モデルであるLoCI-DiffComを提案する。
提案手法は,コンテキスト認識の整合性を確保しつつ,個別化された発達特徴を抽出することができる。
論文 参考訳(メタデータ) (2024-05-17T10:53:40Z) - Predicting Parkinson's disease evolution using deep learning [1.4610685586329806]
パーキンソン病は、世界の人口の1%近くで起こる神経疾患である。
パーキンソン病の診断に利用できる血液検査やバイオマーカーは1つもない。
進行の段階を特定するために設計されたAIツールは存在しない。
論文 参考訳(メタデータ) (2023-12-28T10:30:54Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
本稿では,正常脳解剖のパッチベース推定法として拡散モデルの生成タスクを再構築する手法を提案する。
腫瘍と多発性硬化症について検討し,既存のベースラインと比較して25.1%の改善がみられた。
論文 参考訳(メタデータ) (2023-03-07T09:40:22Z) - Temporally Adjustable Longitudinal Fluid-Attenuated Inversion Recovery
MRI Estimation / Synthesis for Multiple Sclerosis [0.0]
多発性硬化症(Multiple Sclerosis、MS)は、慢性進行性神経疾患である。
脳MRI(FLAIR brain magnetic resonance imaging)は、他のMRI法と比較して、MS病変のより優れた可視化と特徴を提供する。
MSの縦断脳FLAIR MRIは、経時的に患者を反復的に画像化することで、臨床医が疾患の進行をモニタリングするための有用な情報を提供する。
様々な時間ラグを伴う将来の脳MRI検査の予測は、健康な老化やアルツハイマー病の構造的変性など、限られた用途でのみ試みられている。
論文 参考訳(メタデータ) (2022-09-09T12:42:00Z) - Federated Learning Enables Big Data for Rare Cancer Boundary Detection [98.5549882883963]
6大陸にわたる71の医療機関のデータを含む,これまでで最大のフェデレーテッドML研究の結果を報告する。
グリオ芽腫の稀な疾患に対する腫瘍境界自動検出装置を作製した。
当科では, 外科的に標的とした腫瘍の悪性度を高めるために, 33%の改善率を示し, 腫瘍全体に対する23%の改善率を示した。
論文 参考訳(メタデータ) (2022-04-22T17:27:00Z) - Unsupervised Anomaly Detection in 3D Brain MRI using Deep Learning with
Multi-Task Brain Age Prediction [53.122045119395594]
ディープラーニングを用いた脳MRIにおける教師なし異常検出(UAD)は有望な結果を示した。
年齢情報を考慮した3次元脳MRIにおけるUDAの深層学習を提案する。
そこで本研究では,マルチタスク年齢予測を用いた新しい深層学習手法を提案する。
論文 参考訳(メタデータ) (2022-01-31T09:39:52Z) - Patch-based Brain Age Estimation from MR Images [64.66978138243083]
磁気共鳴画像(MRI)による脳年齢推定は、被験者の生物学的脳年齢と時系列年齢の違いを導出する。
より高年齢の神経変性を早期に検出することは、より良い医療と患者の計画を促進する可能性がある。
我々は、脳の3Dパッチと畳み込みニューラルネットワーク(CNN)を用いて、局所的な脳年齢推定器を開発する新しいディープラーニングアプローチを開発した。
論文 参考訳(メタデータ) (2020-08-29T11:50:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。