論文の概要: Enhancing Spatiotemporal Disease Progression Models via Latent Diffusion and Prior Knowledge
- arxiv url: http://arxiv.org/abs/2405.03328v1
- Date: Mon, 6 May 2024 10:07:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 14:15:50.969087
- Title: Enhancing Spatiotemporal Disease Progression Models via Latent Diffusion and Prior Knowledge
- Title(参考訳): 潜時拡散と事前知識による時空間疾患進行モデルの強化
- Authors: Lemuel Puglisi, Daniel C. Alexander, Daniele Ravì,
- Abstract要約: 本稿では,潜伏拡散に基づく時間的疾患モデルであるBrain LaLAS(BrLP)を紹介する。
BrLPは3D脳の進行MRIで個々のレベルでの疾患の進化を予測するように設計されている。
- 参考スコア(独自算出の注目度): 2.7853513988338108
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we introduce Brain Latent Progression (BrLP), a novel spatiotemporal disease progression model based on latent diffusion. BrLP is designed to predict the evolution of diseases at the individual level on 3D brain MRIs. Existing deep generative models developed for this task are primarily data-driven and face challenges in learning disease progressions. BrLP addresses these challenges by incorporating prior knowledge from disease models to enhance the accuracy of predictions. To implement this, we propose to integrate an auxiliary model that infers volumetric changes in various brain regions. Additionally, we introduce Latent Average Stabilization (LAS), a novel technique to improve spatiotemporal consistency of the predicted progression. BrLP is trained and evaluated on a large dataset comprising 11,730 T1-weighted brain MRIs from 2,805 subjects, collected from three publicly available, longitudinal Alzheimer's Disease (AD) studies. In our experiments, we compare the MRI scans generated by BrLP with the actual follow-up MRIs available from the subjects, in both cross-sectional and longitudinal settings. BrLP demonstrates significant improvements over existing methods, with an increase of 22% in volumetric accuracy across AD-related brain regions and 43% in image similarity to the ground-truth scans. The ability of BrLP to generate conditioned 3D scans at the subject level, along with the novelty of integrating prior knowledge to enhance accuracy, represents a significant advancement in disease progression modeling, opening new avenues for precision medicine. The code of BrLP is available at the following link: https://github.com/LemuelPuglisi/BrLP.
- Abstract(参考訳): 本稿では,潜伏拡散に基づく新しい時空間疾患進行モデルであるBrain Latent Progression (BrLP)を紹介する。
BrLPは、個々のレベルでの病気の進化を3D脳MRIで予測するように設計されている。
このタスクのために開発された既存の深層生成モデルは、主にデータ駆動であり、疾患の進行を学習する際の課題に直面している。
BrLPは、予測の精度を高めるために、疾患モデルからの事前の知識を取り入れることで、これらの課題に対処する。
そこで本研究では,脳領域の容積変化を推定する補助モデルを提案する。
さらに,予測進行の時空間整合性を改善する新しい手法であるLatent Average Stabilization (LAS)を導入する。
BrLPは、2,805名の被験者から11,730個のT1強調脳MRIからなる大規模なデータセットでトレーニングされ、評価されている。
実験では, BrLPが生成したMRIスキャンと被験者から取得した実際の追跡MRIとを, 横断的, 縦断的に比較した。
BrLPは既存の手法よりも大幅に改善され、AD関連脳領域における体積精度は22%、画像類似度は43%向上した。
BrLPが被験者レベルで条件付き3Dスキャンを生成する能力と、精度を高めるために事前知識を統合することの新規性は、疾患進行モデリングの著しい進歩を示し、精密医療のための新たな道を開いた。
BrLPのコードは https://github.com/LemuelPuglisi/BrLP のリンクで公開されている。
関連論文リスト
- TADM: Temporally-Aware Diffusion Model for Neurodegenerative Progression on Brain MRI [4.414541804340033]
時間的認識拡散モデル(TADM)は,スキャン間の強度差による構造変化の分布を学習する。
トレーニング中、モデルのトレーニングプロセスを洗練するために、トレーニング済みのBrain-Age Estimator(BAE)を活用することを提案する。
我々のアプローチは、患者の結果を予測したり、患者に対する治療を改善するといった応用に役立ちます。
論文 参考訳(メタデータ) (2024-06-18T09:00:49Z) - Predicting Parkinson's disease evolution using deep learning [1.4610685586329806]
パーキンソン病は、世界の人口の1%近くで起こる神経疾患である。
パーキンソン病の診断に利用できる血液検査やバイオマーカーは1つもない。
進行の段階を特定するために設計されたAIツールは存在しない。
論文 参考訳(メタデータ) (2023-12-28T10:30:54Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
本稿では,正常脳解剖のパッチベース推定法として拡散モデルの生成タスクを再構築する手法を提案する。
腫瘍と多発性硬化症について検討し,既存のベースラインと比較して25.1%の改善がみられた。
論文 参考訳(メタデータ) (2023-03-07T09:40:22Z) - Temporally Adjustable Longitudinal Fluid-Attenuated Inversion Recovery
MRI Estimation / Synthesis for Multiple Sclerosis [0.0]
多発性硬化症(Multiple Sclerosis、MS)は、慢性進行性神経疾患である。
脳MRI(FLAIR brain magnetic resonance imaging)は、他のMRI法と比較して、MS病変のより優れた可視化と特徴を提供する。
MSの縦断脳FLAIR MRIは、経時的に患者を反復的に画像化することで、臨床医が疾患の進行をモニタリングするための有用な情報を提供する。
様々な時間ラグを伴う将来の脳MRI検査の予測は、健康な老化やアルツハイマー病の構造的変性など、限られた用途でのみ試みられている。
論文 参考訳(メタデータ) (2022-09-09T12:42:00Z) - Building Brains: Subvolume Recombination for Data Augmentation in Large
Vessel Occlusion Detection [56.67577446132946]
この戦略をデータから学ぶためには、標準的なディープラーニングベースのモデルに対して、大規模なトレーニングデータセットが必要である。
そこで本研究では, 異なる患者から血管木セグメントを組換えることで, 人工的なトレーニングサンプルを生成する方法を提案する。
拡張スキームに則って,タスク固有の入力を入力した3D-DenseNetを用いて,半球間の比較を行う。
論文 参考訳(メタデータ) (2022-05-05T10:31:57Z) - Federated Learning Enables Big Data for Rare Cancer Boundary Detection [98.5549882883963]
6大陸にわたる71の医療機関のデータを含む,これまでで最大のフェデレーテッドML研究の結果を報告する。
グリオ芽腫の稀な疾患に対する腫瘍境界自動検出装置を作製した。
当科では, 外科的に標的とした腫瘍の悪性度を高めるために, 33%の改善率を示し, 腫瘍全体に対する23%の改善率を示した。
論文 参考訳(メタデータ) (2022-04-22T17:27:00Z) - Unsupervised Anomaly Detection in 3D Brain MRI using Deep Learning with
Multi-Task Brain Age Prediction [53.122045119395594]
ディープラーニングを用いた脳MRIにおける教師なし異常検出(UAD)は有望な結果を示した。
年齢情報を考慮した3次元脳MRIにおけるUDAの深層学習を提案する。
そこで本研究では,マルチタスク年齢予測を用いた新しい深層学習手法を提案する。
論文 参考訳(メタデータ) (2022-01-31T09:39:52Z) - Automatic Classification of Neuromuscular Diseases in Children Using
Photoacoustic Imaging [77.32032399775152]
神経筋疾患(NMD)は、医療システムと社会の両方に重大な負担をもたらす。
激しい進行性筋力低下、筋変性、収縮、変形、進行性障害を引き起こす。
論文 参考訳(メタデータ) (2022-01-27T16:37:19Z) - Classification of Brain Tumours in MR Images using Deep Spatiospatial
Models [0.0]
本稿では、ResNet (2+1)DとResNet Mixed Convolutionの2つの時間モデルを用いて、異なるタイプの脳腫瘍を分類する。
両モデルとも純粋な3次元畳み込みモデルであるResNet18よりも優れていた。
論文 参考訳(メタデータ) (2021-05-28T19:27:51Z) - Deep Convolutional Neural Network based Classification of Alzheimer's
Disease using MRI data [8.609787905151563]
アルツハイマー病(Alzheimer's disease、AD)は、脳細胞を破壊し、患者の記憶に損失を引き起こす進行性および不治性の神経変性疾患である。
本稿では,不均衡な3次元MRIデータセットを用いた2次元深部畳み込みニューラルネットワーク(2D-DCNN)によるADの診断手法を提案する。
このモデルはMRIをAD、軽度認知障害、正常制御の3つのカテゴリに分類し、99.89%の分類精度を不均衡クラスで達成した。
論文 参考訳(メタデータ) (2021-01-08T06:51:08Z) - Patch-based Brain Age Estimation from MR Images [64.66978138243083]
磁気共鳴画像(MRI)による脳年齢推定は、被験者の生物学的脳年齢と時系列年齢の違いを導出する。
より高年齢の神経変性を早期に検出することは、より良い医療と患者の計画を促進する可能性がある。
我々は、脳の3Dパッチと畳み込みニューラルネットワーク(CNN)を用いて、局所的な脳年齢推定器を開発する新しいディープラーニングアプローチを開発した。
論文 参考訳(メタデータ) (2020-08-29T11:50:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。