Annot-Mix: Learning with Noisy Class Labels from Multiple Annotators via a Mixup Extension
- URL: http://arxiv.org/abs/2405.03386v1
- Date: Mon, 6 May 2024 11:44:54 GMT
- Title: Annot-Mix: Learning with Noisy Class Labels from Multiple Annotators via a Mixup Extension
- Authors: Marek Herde, Lukas Lührs, Denis Huseljic, Bernhard Sick,
- Abstract summary: Training with noisy class labels impairs neural networks' generalization performance.
We propose an extension of mixup, which handles multiple class labels per instance.
integrated into our multi-annotator classification framework annot-mix.
- Score: 1.99197168821625
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training with noisy class labels impairs neural networks' generalization performance. In this context, mixup is a popular regularization technique to improve training robustness by making memorizing false class labels more difficult. However, mixup neglects that, typically, multiple annotators, e.g., crowdworkers, provide class labels. Therefore, we propose an extension of mixup, which handles multiple class labels per instance while considering which class label originates from which annotator. Integrated into our multi-annotator classification framework annot-mix, it performs superiorly to eight state-of-the-art approaches on eleven datasets with noisy class labels provided either by human or simulated annotators. Our code is publicly available through our repository at https://github.com/ies-research/annot-mix.
Related papers
- Mixed Blessing: Class-Wise Embedding guided Instance-Dependent Partial Label Learning [53.64180787439527]
In partial label learning (PLL), every sample is associated with a candidate label set comprising the ground-truth label and several noisy labels.
For the first time, we create class-wise embeddings for each sample, which allow us to explore the relationship of instance-dependent noisy labels.
To reduce the high label ambiguity, we introduce the concept of class prototypes containing global feature information.
arXiv Detail & Related papers (2024-12-06T13:25:39Z) - Determined Multi-Label Learning via Similarity-Based Prompt [12.428779617221366]
In multi-label classification, each training instance is associated with multiple class labels simultaneously.
To alleviate this problem, a novel labeling setting termed textitDetermined Multi-Label Learning (DMLL) is proposed.
arXiv Detail & Related papers (2024-03-25T07:08:01Z) - Active Generalized Category Discovery [60.69060965936214]
Generalized Category Discovery (GCD) endeavors to cluster unlabeled samples from both novel and old classes.
We take the spirit of active learning and propose a new setting called Active Generalized Category Discovery (AGCD)
Our method achieves state-of-the-art performance on both generic and fine-grained datasets.
arXiv Detail & Related papers (2024-03-07T07:12:24Z) - Multi-Label Knowledge Distillation [86.03990467785312]
We propose a novel multi-label knowledge distillation method.
On one hand, it exploits the informative semantic knowledge from the logits by dividing the multi-label learning problem into a set of binary classification problems.
On the other hand, it enhances the distinctiveness of the learned feature representations by leveraging the structural information of label-wise embeddings.
arXiv Detail & Related papers (2023-08-12T03:19:08Z) - Towards Imbalanced Large Scale Multi-label Classification with Partially
Annotated Labels [8.977819892091]
Multi-label classification is a widely encountered problem in daily life, where an instance can be associated with multiple classes.
In this work, we address the issue of label imbalance and investigate how to train neural networks using partial labels.
arXiv Detail & Related papers (2023-07-31T21:50:48Z) - Review of Extreme Multilabel Classification [1.888738346075831]
Extreme multilabel classification or XML, is an active area of interest in machine learning.
The community has come up with a useful set of metrics to identify correctly the prediction for head or tail labels.
arXiv Detail & Related papers (2023-02-12T18:29:20Z) - Large Loss Matters in Weakly Supervised Multi-Label Classification [50.262533546999045]
We first regard unobserved labels as negative labels, casting the W task into noisy multi-label classification.
We propose novel methods for W which reject or correct the large loss samples to prevent model from memorizing the noisy label.
Our methodology actually works well, validating that treating large loss properly matters in a weakly supervised multi-label classification.
arXiv Detail & Related papers (2022-06-08T08:30:24Z) - Trustable Co-label Learning from Multiple Noisy Annotators [68.59187658490804]
Supervised deep learning depends on massive accurately annotated examples.
A typical alternative is learning from multiple noisy annotators.
This paper proposes a data-efficient approach, called emphTrustable Co-label Learning (TCL)
arXiv Detail & Related papers (2022-03-08T16:57:00Z) - All Labels Are Not Created Equal: Enhancing Semi-supervision via Label
Grouping and Co-training [32.45488147013166]
Pseudo-labeling is a key component in semi-supervised learning (SSL)
We propose SemCo, a method which leverages label semantics and co-training to address this problem.
We show that our method achieves state-of-the-art performance across various SSL tasks including 5.6% accuracy improvement on Mini-ImageNet dataset with 1000 labeled examples.
arXiv Detail & Related papers (2021-04-12T07:33:16Z) - Evaluating Multi-label Classifiers with Noisy Labels [0.7868449549351487]
In the real world, it is more common to deal with noisy datasets than clean datasets.
We present a Context-Based Multi-Label-Classifier (CbMLC) that effectively handles noisy labels.
We show CbMLC yields substantial improvements over the previous methods in most cases.
arXiv Detail & Related papers (2021-02-16T19:50:52Z) - OpenMix: Reviving Known Knowledge for Discovering Novel Visual
Categories in An Open World [127.64076228829606]
We introduce OpenMix to mix the unlabeled examples from an open set and the labeled examples from known classes.
OpenMix helps to prevent the model from overfitting on unlabeled samples that may be assigned with wrong pseudo-labels.
arXiv Detail & Related papers (2020-04-12T05:52:39Z) - Multi-Class Classification from Noisy-Similarity-Labeled Data [98.13491369929798]
We propose a method for learning from only noisy-similarity-labeled data.
We use a noise transition matrix to bridge the class-posterior probability between clean and noisy data.
We build a novel learning system which can assign noise-free class labels for instances.
arXiv Detail & Related papers (2020-02-16T05:10:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.