論文の概要: Large Language Models (LLMs) as Agents for Augmented Democracy
- arxiv url: http://arxiv.org/abs/2405.03452v3
- Date: Tue, 30 Jul 2024 09:51:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-31 21:43:34.830320
- Title: Large Language Models (LLMs) as Agents for Augmented Democracy
- Title(参考訳): 民主化のためのエージェントとしての大規模言語モデル(LLM)
- Authors: Jairo Gudiño-Rosero, Umberto Grandi, César A. Hidalgo,
- Abstract要約: 我々は、市民の嗜好に関するデータを増やすために、既成のLLMを微調整した拡張民主主義システムについて検討する。
被験者の個人の政治的選択と参加者の全サンプルの集合的選好の両方をLLMが予測する精度を推定するために、列車試験のクロスバリデーション・セットアップを使用する。
- 参考スコア(独自算出の注目度): 6.491009626125319
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We explore an augmented democracy system built on off-the-shelf LLMs fine-tuned to augment data on citizen's preferences elicited over policies extracted from the government programs of the two main candidates of Brazil's 2022 presidential election. We use a train-test cross-validation setup to estimate the accuracy with which the LLMs predict both: a subject's individual political choices and the aggregate preferences of the full sample of participants. At the individual level, we find that LLMs predict out of sample preferences more accurately than a "bundle rule", which would assume that citizens always vote for the proposals of the candidate aligned with their self-reported political orientation. At the population level, we show that a probabilistic sample augmented by an LLM provides a more accurate estimate of the aggregate preferences of a population than the non-augmented probabilistic sample alone. Together, these results indicates that policy preference data augmented using LLMs can capture nuances that transcend party lines and represents a promising avenue of research for data augmentation.
- Abstract(参考訳): 我々は、2022年ブラジル大統領選挙の2大候補の政府プログラムから抽出された政策について、市民の嗜好に関するデータを増やすために、既成のLLMを微調整した拡張民主主義システムについて検討する。
被験者の個別の政治的選択と参加者の全サンプルの集合的選好の両方をLLMが予測する精度を推定するために、列車試験のクロスバリデーション・セットアップを使用する。
個人レベルでは、LLMは「バンドルルール」よりもサンプルの選好からより正確に予測できることが分かり、市民は常に、自己報告された政治的指向に沿った候補者の提案に投票するであろうと仮定する。
人口レベルでは, LLMにより増強された確率的標本は, 人口の集合的嗜好を, 増大しない確率的標本単独よりも正確に推定できることが示されている。
これらの結果から, LLMを用いた政策選好データにより, パーティーラインを超越したニュアンスを捕捉し, データの増大に向けた将来的な研究の道筋を示すことが示唆された。
関連論文リスト
- Specializing Large Language Models to Simulate Survey Response Distributions for Global Populations [49.908708778200115]
我々は,調査応答分布をシミュレートする大規模言語モデル (LLM) を最初に開発した。
テストベッドとして、我々は2つの世界文化調査の国レベルの結果を使用します。
予測された応答分布と実際の応答分布のばらつきを最小限に抑えるために, ファースト・ツーケン確率に基づく微調整法を提案する。
論文 参考訳(メタデータ) (2025-02-10T21:59:27Z) - A Large-scale Empirical Study on Large Language Models for Election Prediction [12.582222782098587]
我々は、人口統計学、イデオロギー、時間に敏感な要因を統合した、選挙予測のための多段階推論フレームワークを導入する。
我々は2024年のアメリカ合衆国大統領選挙に我々のアプローチを適用し、観測された歴史的データを超えてその一般化能力を示す。
我々は、事前訓練されたコーパスに埋め込まれた潜在的な政治的バイアスを特定し、どのように人口動態が誇張されるかを調べ、これらの問題を緩和するための戦略を提案する。
論文 参考訳(メタデータ) (2024-12-19T07:10:51Z) - Algorithmic Fidelity of Large Language Models in Generating Synthetic German Public Opinions: A Case Study [23.458234676060716]
本研究では,大規模言語モデル(LLM)のアルゴリズム的忠実度について検討する。
我々は、人口動態の特徴をペルソナのプロンプトに組み込むことで、ドイツのサブポピュレーションを反映した合成世論を生成するよう、異なるLLMに促す。
以上の結果から,Llama は他の LLM よりも,特にグループ内での意見の多様性が低い場合には,サブポピュレーションの表現に優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-12-17T18:46:32Z) - ElectionSim: Massive Population Election Simulation Powered by Large Language Model Driven Agents [70.17229548653852]
我々は,大規模言語モデルに基づく革新的な選挙シミュレーションフレームワークであるElectronSimを紹介する。
ソーシャルメディアプラットフォームからサンプリングした100万レベルの投票者プールを提示し、正確な個人シミュレーションを支援する。
PPEは、米国大統領選挙シナリオ下での我々の枠組みの性能を評価するための、世論調査に基づく大統領選挙ベンチマークである。
論文 参考訳(メタデータ) (2024-10-28T05:25:50Z) - United in Diversity? Contextual Biases in LLM-Based Predictions of the 2024 European Parliament Elections [45.84205238554709]
大規模言語モデル(LLM)は、社会科学研究に革命をもたらす可能性があると認識されている。
本研究では,LLMに基づく世論の予測が文脈依存バイアスを示す程度について検討した。
我々は2024年の欧州議会選挙における投票行動について、最先端のLDMを用いて予測する。
論文 参考訳(メタデータ) (2024-08-29T16:01:06Z) - Vox Populi, Vox AI? Using Language Models to Estimate German Public Opinion [45.84205238554709]
我々は,2017年ドイツ縦断選挙研究の回答者の個人特性と一致するペルソナの合成サンプルを生成した。
我々は,LSM GPT-3.5に対して,各回答者の投票選択を予測し,これらの予測を調査に基づく推定と比較する。
GPT-3.5は市民の投票選択を正確に予測せず、緑の党と左派に偏見を呈している。
論文 参考訳(メタデータ) (2024-07-11T14:52:18Z) - Whose Side Are You On? Investigating the Political Stance of Large Language Models [56.883423489203786]
大規模言語モデル(LLM)の政治的指向性について,8つのトピックのスペクトルにわたって検討する。
我々の調査は、中絶からLGBTQ問題まで8つのトピックにまたがるLLMの政治的整合性について考察している。
この結果から,ユーザはクエリ作成時に留意すべきであり,中立的なプロンプト言語を選択する際には注意が必要であることが示唆された。
論文 参考訳(メタデータ) (2024-03-15T04:02:24Z) - LLM Voting: Human Choices and AI Collective Decision Making [0.0]
本稿では,大規模言語モデル (LLM) の投票行動,特に GPT-4 と LLaMA-2 について検討する。
投票方法の選択と提示順序がLLM投票結果に影響を及ぼすことがわかった。
さまざまな人格がこれらのバイアスの一部を減らし、人間の選択との整合性を高めることができることがわかった。
論文 参考訳(メタデータ) (2024-01-31T14:52:02Z) - Large Language Models Are Not Robust Multiple Choice Selectors [117.72712117510953]
複数選択質問(MCQ)は、大規模言語モデル(LLM)の評価において、一般的なが重要なタスク形式として機能する。
この研究は、現代のLLMが、その固有の「選択バイアス」によるオプション位置変化に対して脆弱であることを示している。
そこで本研究では,オプションIDに対する事前バイアスを全体予測分布から分離するPriDeという,ラベルのない推論時間脱バイアス手法を提案する。
論文 参考訳(メタデータ) (2023-09-07T17:44:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。