論文の概要: Detecting Android Malware: From Neural Embeddings to Hands-On Validation with BERTroid
- arxiv url: http://arxiv.org/abs/2405.03620v2
- Date: Mon, 12 Aug 2024 15:16:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-13 23:07:09.536117
- Title: Detecting Android Malware: From Neural Embeddings to Hands-On Validation with BERTroid
- Title(参考訳): Androidのマルウェアを検出する: BERTroidによるニューラルネットワークの埋め込みから手動検証
- Authors: Meryam Chaieb, Mostafa Anouar Ghorab, Mohamed Aymen Saied,
- Abstract要約: BERTroidは,BERTアーキテクチャ上に構築された革新的なマルウェア検出モデルである。
BERTroidはAndroidマルウェアと戦うための有望なソリューションとして登場した。
当社のアプローチは,Androidシステム上でのマルウェアの急速な進化に対して,有望なレジリエンスを示すものだ。
- 参考スコア(独自算出の注目度): 0.38233569758620056
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As cyber threats and malware attacks increasingly alarm both individuals and businesses, the urgency for proactive malware countermeasures intensifies. This has driven a rising interest in automated machine learning solutions. Transformers, a cutting-edge category of attention-based deep learning methods, have demonstrated remarkable success. In this paper, we present BERTroid, an innovative malware detection model built on the BERT architecture. Overall, BERTroid emerged as a promising solution for combating Android malware. Its ability to outperform state-of-the-art solutions demonstrates its potential as a proactive defense mechanism against malicious software attacks. Additionally, we evaluate BERTroid on multiple datasets to assess its performance across diverse scenarios. In the dynamic landscape of cybersecurity, our approach has demonstrated promising resilience against the rapid evolution of malware on Android systems. While the machine learning model captures broad patterns, we emphasize the role of manual validation for deeper comprehension and insight into these behaviors. This human intervention is critical for discerning intricate and context-specific behaviors, thereby validating and reinforcing the model's findings.
- Abstract(参考訳): サイバー脅威やマルウェア攻撃が個人と企業の両方を脅かすようになると、積極的なマルウェア対策の緊急性が増す。
これにより、自動機械学習ソリューションへの関心が高まっている。
注目に基づくディープラーニング手法の最先端カテゴリであるTransformersは、目覚ましい成功を収めている。
本稿では,BERTアーキテクチャ上に構築された革新的なマルウェア検出モデルであるBERTroidを提案する。
全体として、BERTroidはAndroidマルウェアと戦うための有望なソリューションとして登場した。
最先端のソリューションに勝る能力は、悪意のあるソフトウェア攻撃に対する積極的な防御メカニズムとしての可能性を示している。
さらに,複数のデータセット上でBERTroidを評価し,その性能をさまざまなシナリオで評価する。
サイバーセキュリティの動的な状況において、我々のアプローチは、Androidシステム上でのマルウェアの急速な進化に対して、有望なレジリエンスを示してきた。
機械学習モデルは幅広いパターンをキャプチャするが、より深い理解とこれらの振る舞いに対する洞察のための手動検証の役割を強調している。
この人間の介入は、複雑な振る舞いと文脈固有の振る舞いを識別し、それによってモデルの発見を検証および強化するために重要である。
関連論文リスト
- MASKDROID: Robust Android Malware Detection with Masked Graph Representations [56.09270390096083]
マルウェアを識別する強力な識別能力を持つ強力な検出器MASKDROIDを提案する。
我々は、グラフニューラルネットワークベースのフレームワークにマスキング機構を導入し、MASKDROIDに入力グラフ全体の復元を強制する。
この戦略により、モデルは悪意のあるセマンティクスを理解し、より安定した表現を学習し、敵攻撃に対する堅牢性を高めることができる。
論文 参考訳(メタデータ) (2024-09-29T07:22:47Z) - Case Study: Neural Network Malware Detection Verification for Feature and Image Datasets [5.198311758274061]
我々は、敵に対する具体的な保護を確保するのに役立つ新しい検証ドメインを提案する。
マルウェア分類と2種類の共通マルウェアデータセットについて述べる。
マルウェア分類の検証の改善と改善に必要な課題と今後の考察について概説する。
論文 参考訳(メタデータ) (2024-04-08T17:37:22Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
我々は,マルウェア検出領域の非ランダム化スムース化技術を再設計し,DRSM(De-Randomized Smoothed MalConv)を開発した。
具体的には,実行可能ファイルの局所構造を最大に保ちながら,逆数バイトの影響を確実に抑制するウィンドウアブレーション方式を提案する。
私たちは、マルウェア実行ファイルの静的検出という領域で、認証された堅牢性を提供する最初の人です。
論文 参考訳(メタデータ) (2023-03-20T17:25:22Z) - Adversarial Patterns: Building Robust Android Malware Classifiers [0.9208007322096533]
サイバーセキュリティの分野では、機械学習モデルがマルウェア検出において大幅に改善されている。
構造化されていないデータから複雑なパターンを理解する能力があるにもかかわらず、これらのモデルは敵攻撃の影響を受けやすい。
本稿では,Androidマルウェア分類器の文脈における敵機械学習の包括的レビューを行う。
論文 参考訳(メタデータ) (2022-03-04T03:47:08Z) - EvadeDroid: A Practical Evasion Attack on Machine Learning for Black-box
Android Malware Detection [2.2811510666857546]
EvadeDroidは、現実のシナリオでブラックボックスのAndroidマルウェア検出を効果的に回避するために設計された、問題空間の敵攻撃である。
EvadeDroidは, DREBIN, Sec-SVM, ADE-MA, MaMaDroid, Opcode-SVMに対して, 1-9クエリで80%-95%の回避率を達成した。
論文 参考訳(メタデータ) (2021-10-07T09:39:40Z) - MalBERT: Using Transformers for Cybersecurity and Malicious Software
Detection [0.0]
注意に基づくディープラーニング技術のカテゴリであるtransformersは、最近、さまざまなタスクを解決する素晴らしい結果を示している。
本研究では,android アプリケーションのソースコードの静的解析を行う bert (bi representations from transformers) に基づくモデルを提案する。
得られた結果は、悪意のあるソフトウェア検出のためのTransformerベースのモデルによって得られた高い性能を示す。
論文 参考訳(メタデータ) (2021-03-05T17:09:46Z) - Adversarial defense for automatic speaker verification by cascaded
self-supervised learning models [101.42920161993455]
ますます悪意のある攻撃者は、自動話者検証(ASV)システムで敵攻撃を仕掛けようとする。
本稿では,逐次的自己教師付き学習モデルに基づく標準的かつ攻撃非依存な手法を提案する。
実験により, 本手法は効果的な防御性能を実現し, 敵攻撃に対抗できることを示した。
論文 参考訳(メタデータ) (2021-02-14T01:56:43Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
攻撃者は、マルウェア分類器を訓練するために使用されるデータセットをターゲットとした、高度で効率的な中毒攻撃を、どのように起動できるかを示す。
マルウェア検出領域における他の中毒攻撃とは対照的に、我々の攻撃はマルウェアファミリーではなく、移植されたトリガーを含む特定のマルウェアインスタンスに焦点を当てている。
我々は、この新たに発見された深刻な脅威に対する将来の高度な防御に役立つ包括的検出手法を提案する。
論文 参考訳(メタデータ) (2020-10-30T15:27:44Z) - Enhanced Adversarial Strategically-Timed Attacks against Deep
Reinforcement Learning [91.13113161754022]
本稿では,DRLに基づくナビゲーションシステムに対して,選択した時間フレーム上の物理ノイズパターンを妨害することにより,タイミングに基づく逆方向戦略を導入する。
実験結果から, 対向タイミング攻撃は性能低下を引き起こす可能性が示唆された。
論文 参考訳(メタデータ) (2020-02-20T21:39:25Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
人工知能(AI)の最近の進歩は、サイバーセキュリティのための行動分析(UEBA)に新たな能力をもたらした。
本稿では、検出プロセスを改善し、人間の専門知識を効果的に活用することにより、この攻撃を効果的に軽減するソリューションを提案する。
論文 参考訳(メタデータ) (2020-01-13T13:54:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。