QxEAI: Quantum-like evolutionary algorithm for automated probabilistic forecasting
- URL: http://arxiv.org/abs/2405.03701v2
- Date: Fri, 21 Jun 2024 02:45:04 GMT
- Title: QxEAI: Quantum-like evolutionary algorithm for automated probabilistic forecasting
- Authors: Kevin Xin, Lizhi Xin,
- Abstract summary: This paper proposes QxEAI, a methodology that produces a probabilistic forecast.
We show how our methodology produces accurate forecasts while requiring little to none manual work.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Forecasting, to estimate future events, is crucial for business and decision-making. This paper proposes QxEAI, a methodology that produces a probabilistic forecast that utilizes a quantum-like evolutionary algorithm based on training a quantum-like logic decision tree and a classical value tree on a small number of related time series. We demonstrate how the application of our quantum-like evolutionary algorithm to forecasting can overcome the challenges faced by classical and other machine learning approaches. By using three real-world datasets (Dow Jones Index, retail sales, gas consumption), we show how our methodology produces accurate forecasts while requiring little to none manual work.
Related papers
- Predicting Probabilities of Error to Combine Quantization and Early Exiting: QuEE [68.6018458996143]
We propose a more general dynamic network that can combine both quantization and early exit dynamic network: QuEE.
Our algorithm can be seen as a form of soft early exiting or input-dependent compression.
The crucial factor of our approach is accurate prediction of the potential accuracy improvement achievable through further computation.
arXiv Detail & Related papers (2024-06-20T15:25:13Z) - Quantum Next Generation Reservoir Computing: An Efficient Quantum
Algorithm for Forecasting Quantum Dynamics [1.9260081982051918]
We show that NG-RC can accurately predict full many-body quantum dynamics in both integrable and chaotic systems.
We propose an end-to-end quantum algorithm for many-body quantum dynamics forecasting with a quantum computational speedup via the block-encoding technique.
arXiv Detail & Related papers (2023-08-28T00:34:40Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
We propose a data-centric learning paradigm combining the strength of neural-network protocols and classical shadows.
Capitalizing on the generalization power of neural networks, this paradigm can be trained offline and excel at predicting previously unseen systems.
We present the instantiation of our paradigm in quantum state tomography and direct fidelity estimation tasks and conduct numerical analysis up to 60 qubits.
arXiv Detail & Related papers (2023-08-22T09:11:53Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - A review of predictive uncertainty estimation with machine learning [0.0]
We review the topic of predictive uncertainty estimation with machine learning algorithms.
We discuss the related metrics (consistent scoring functions and proper scoring rules) for assessing probabilistic predictions.
The review expedites our understanding on how to develop new algorithms tailored to users' needs.
arXiv Detail & Related papers (2022-09-17T10:36:30Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
Existing algorithms for uncertainty estimation require modifying the model architecture and training procedure.
This work proposes a new algorithm that can be applied to a given trained neural network and produces approximate prediction intervals.
arXiv Detail & Related papers (2022-05-06T13:18:31Z) - Non-Clairvoyant Scheduling with Predictions Revisited [77.86290991564829]
In non-clairvoyant scheduling, the task is to find an online strategy for scheduling jobs with a priori unknown processing requirements.
We revisit this well-studied problem in a recently popular learning-augmented setting that integrates (untrusted) predictions in algorithm design.
We show that these predictions have desired properties, admit a natural error measure as well as algorithms with strong performance guarantees.
arXiv Detail & Related papers (2022-02-21T13:18:11Z) - Hessian-based toolbox for reliable and interpretable machine learning in
physics [58.720142291102135]
We present a toolbox for interpretability and reliability, extrapolation of the model architecture.
It provides a notion of the influence of the input data on the prediction at a given test point, an estimation of the uncertainty of the model predictions, and an agnostic score for the model predictions.
Our work opens the road to the systematic use of interpretability and reliability methods in ML applied to physics and, more generally, science.
arXiv Detail & Related papers (2021-08-04T16:32:59Z) - Quantum Bayesian decision-making* [0.0]
It proposes a completely quantum mechanical decision-making process with a proven computational advantage.
A prototype implementation in Qiskit (a Python-based program development kit for the IBM Q machine) is discussed as a proof-of-concept.
arXiv Detail & Related papers (2020-10-05T15:19:16Z) - Predicting human-generated bitstreams using classical and quantum models [3.009407292418984]
School of thought contends that human decision making exhibits quantum-like logic.
We emulate binary decision-making using low width, low depth, parameterized quantum circuits.
arXiv Detail & Related papers (2020-04-09T16:59:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.