Improving Graph Machine Learning Performance Through Feature Augmentation Based on Network Control Theory
- URL: http://arxiv.org/abs/2405.03706v1
- Date: Fri, 3 May 2024 19:11:54 GMT
- Title: Improving Graph Machine Learning Performance Through Feature Augmentation Based on Network Control Theory
- Authors: Anwar Said, Obaid Ullah Ahmad, Waseem Abbas, Mudassir Shabbir, Xenofon Koutsoukos,
- Abstract summary: Graph Neural Networks (GNNs) have demonstrated exceptional utility in various network-based learning tasks.
Many real-world systems may lack node-level information, posing a challenge for GNNs.
We introduce a novel approach, NCT-based Enhanced Feature Augmentation (NCT-EFA), that assimilates average controllability, along with other centrality indices, into the feature augmentation pipeline to enhance GNNs performance.
- Score: 3.2505793054002963
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Network control theory (NCT) offers a robust analytical framework for understanding the influence of network topology on dynamic behaviors, enabling researchers to decipher how certain patterns of external control measures can steer system dynamics towards desired states. Distinguished from other structure-function methodologies, NCT's predictive capabilities can be coupled with deploying Graph Neural Networks (GNNs), which have demonstrated exceptional utility in various network-based learning tasks. However, the performance of GNNs heavily relies on the expressiveness of node features, and the lack of node features can greatly degrade their performance. Furthermore, many real-world systems may lack node-level information, posing a challenge for GNNs.To tackle this challenge, we introduce a novel approach, NCT-based Enhanced Feature Augmentation (NCT-EFA), that assimilates average controllability, along with other centrality indices, into the feature augmentation pipeline to enhance GNNs performance. Our evaluation of NCT-EFA, on six benchmark GNN models across two experimental setting. solely employing average controllability and in combination with additional centrality metrics. showcases an improved performance reaching as high as 11%. Our results demonstrate that incorporating NCT into feature enrichment can substantively extend the applicability and heighten the performance of GNNs in scenarios where node-level information is unavailable.
Related papers
- Learning Invariant Representations of Graph Neural Networks via Cluster
Generalization [58.68231635082891]
Graph neural networks (GNNs) have become increasingly popular in modeling graph-structured data.
In this paper, we experimentally find that the performance of GNNs drops significantly when the structure shift happens.
We propose the Cluster Information Transfer (CIT) mechanism, which can learn invariant representations for GNNs.
arXiv Detail & Related papers (2024-03-06T10:36:56Z) - Attentional Graph Neural Networks for Robust Massive Network
Localization [20.416879207269446]
Graph neural networks (GNNs) have emerged as a prominent tool for classification tasks in machine learning.
This paper integrates GNNs with attention mechanism to tackle a challenging nonlinear regression problem: network localization.
We first introduce a novel network localization method based on graph convolutional network (GCN), which exhibits exceptional precision even under severe non-line-of-sight (NLOS) conditions.
arXiv Detail & Related papers (2023-11-28T15:05:13Z) - Enhanced Graph Neural Networks with Ego-Centric Spectral Subgraph
Embeddings Augmentation [11.841882902141696]
We present a novel approach denoted as Ego-centric Spectral subGraph Embedding Augmentation (ESGEA)
ESGEA aims to enhance and design node features, particularly in scenarios where information is lacking.
We evaluate the proposed method in a social network graph classification task where node attributes are unavailable.
arXiv Detail & Related papers (2023-10-10T14:57:29Z) - Scalable Resource Management for Dynamic MEC: An Unsupervised
Link-Output Graph Neural Network Approach [36.32772317151467]
Deep learning has been successfully adopted in mobile edge computing (MEC) to optimize task offloading and resource allocation.
The dynamics of edge networks raise two challenges in neural network (NN)-based optimization methods: low scalability and high training costs.
In this paper, a novel link-output GNN (LOGNN)-based resource management approach is proposed to flexibly optimize the resource allocation in MEC.
arXiv Detail & Related papers (2023-06-15T08:21:41Z) - Graph Neural Networks are Inherently Good Generalizers: Insights by
Bridging GNNs and MLPs [71.93227401463199]
This paper pinpoints the major source of GNNs' performance gain to their intrinsic capability, by introducing an intermediate model class dubbed as P(ropagational)MLP.
We observe that PMLPs consistently perform on par with (or even exceed) their GNN counterparts, while being much more efficient in training.
arXiv Detail & Related papers (2022-12-18T08:17:32Z) - On Feature Learning in Neural Networks with Global Convergence
Guarantees [49.870593940818715]
We study the optimization of wide neural networks (NNs) via gradient flow (GF)
We show that when the input dimension is no less than the size of the training set, the training loss converges to zero at a linear rate under GF.
We also show empirically that, unlike in the Neural Tangent Kernel (NTK) regime, our multi-layer model exhibits feature learning and can achieve better generalization performance than its NTK counterpart.
arXiv Detail & Related papers (2022-04-22T15:56:43Z) - Edge-Level Explanations for Graph Neural Networks by Extending
Explainability Methods for Convolutional Neural Networks [33.20913249848369]
Graph Neural Networks (GNNs) are deep learning models that take graph data as inputs, and they are applied to various tasks such as traffic prediction and molecular property prediction.
We extend explainability methods for CNNs, such as Local Interpretable Model-Agnostic Explanations (LIME), Gradient-Based Saliency Maps, and Gradient-Weighted Class Activation Mapping (Grad-CAM) to GNNs.
The experimental results indicate that the LIME-based approach is the most efficient explainability method for multiple tasks in the real-world situation, outperforming even the state-of-the
arXiv Detail & Related papers (2021-11-01T06:27:29Z) - Subgroup Generalization and Fairness of Graph Neural Networks [12.88476464580968]
We present a novel PAC-Bayesian analysis for GNNs under a non-IID semi-supervised learning setup.
We further study an accuracy-(dis)parity-style (un)fairness of GNNs from a theoretical perspective.
arXiv Detail & Related papers (2021-06-29T16:13:41Z) - Learning to Drop: Robust Graph Neural Network via Topological Denoising [50.81722989898142]
We propose PTDNet, a parameterized topological denoising network, to improve the robustness and generalization performance of Graph Neural Networks (GNNs)
PTDNet prunes task-irrelevant edges by penalizing the number of edges in the sparsified graph with parameterized networks.
We show that PTDNet can improve the performance of GNNs significantly and the performance gain becomes larger for more noisy datasets.
arXiv Detail & Related papers (2020-11-13T18:53:21Z) - AM-GCN: Adaptive Multi-channel Graph Convolutional Networks [85.0332394224503]
We study whether Graph Convolutional Networks (GCNs) can optimally integrate node features and topological structures in a complex graph with rich information.
We propose an adaptive multi-channel graph convolutional networks for semi-supervised classification (AM-GCN)
Our experiments show that AM-GCN extracts the most correlated information from both node features and topological structures substantially.
arXiv Detail & Related papers (2020-07-05T08:16:03Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.