Scalable Resource Management for Dynamic MEC: An Unsupervised
Link-Output Graph Neural Network Approach
- URL: http://arxiv.org/abs/2306.08938v2
- Date: Tue, 20 Jun 2023 00:08:20 GMT
- Title: Scalable Resource Management for Dynamic MEC: An Unsupervised
Link-Output Graph Neural Network Approach
- Authors: Xiucheng Wang and Nan Cheng and Lianhao Fu and Wei Quan and Ruijin Sun
and Yilong Hui and Tom Luan and Xuemin Shen
- Abstract summary: Deep learning has been successfully adopted in mobile edge computing (MEC) to optimize task offloading and resource allocation.
The dynamics of edge networks raise two challenges in neural network (NN)-based optimization methods: low scalability and high training costs.
In this paper, a novel link-output GNN (LOGNN)-based resource management approach is proposed to flexibly optimize the resource allocation in MEC.
- Score: 36.32772317151467
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning has been successfully adopted in mobile edge computing (MEC) to
optimize task offloading and resource allocation. However, the dynamics of edge
networks raise two challenges in neural network (NN)-based optimization
methods: low scalability and high training costs. Although conventional
node-output graph neural networks (GNN) can extract features of edge nodes when
the network scales, they fail to handle a new scalability issue whereas the
dimension of the decision space may change as the network scales. To address
the issue, in this paper, a novel link-output GNN (LOGNN)-based resource
management approach is proposed to flexibly optimize the resource allocation in
MEC for an arbitrary number of edge nodes with extremely low algorithm
inference delay. Moreover, a label-free unsupervised method is applied to train
the LOGNN efficiently, where the gradient of edge tasks processing delay with
respect to the LOGNN parameters is derived explicitly. In addition, a
theoretical analysis of the scalability of the node-output GNN and link-output
GNN is performed. Simulation results show that the proposed LOGNN can
efficiently optimize the MEC resource allocation problem in a scalable way,
with an arbitrary number of servers and users. In addition, the proposed
unsupervised training method has better convergence performance and speed than
supervised learning and reinforcement learning-based training methods. The code
is available at \url{https://github.com/UNIC-Lab/LOGNN}.
Related papers
- T-GAE: Transferable Graph Autoencoder for Network Alignment [79.89704126746204]
T-GAE is a graph autoencoder framework that leverages transferability and stability of GNNs to achieve efficient network alignment without retraining.
Our experiments demonstrate that T-GAE outperforms the state-of-the-art optimization method and the best GNN approach by up to 38.7% and 50.8%, respectively.
arXiv Detail & Related papers (2023-10-05T02:58:29Z) - Learning State-Augmented Policies for Information Routing in
Communication Networks [92.59624401684083]
We develop a novel State Augmentation (SA) strategy to maximize the aggregate information at source nodes using graph neural network (GNN) architectures.
We leverage an unsupervised learning procedure to convert the output of the GNN architecture to optimal information routing strategies.
In the experiments, we perform the evaluation on real-time network topologies to validate our algorithms.
arXiv Detail & Related papers (2023-09-30T04:34:25Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - GNN at the Edge: Cost-Efficient Graph Neural Network Processing over
Distributed Edge Servers [24.109721494781592]
Graph Neural Networks (GNNs) are still under exploration, presenting a stark disparity to its broad edge adoptions.
This paper studies the cost optimization for distributed GNN processing over a multi-tier heterogeneous edge network.
We show that our approach achieves superior performance over de facto baselines with more than 95.8% cost eduction in a fast convergence speed.
arXiv Detail & Related papers (2022-10-31T13:03:16Z) - Graph Neural Network Based Node Deployment for Throughput Enhancement [20.56966053013759]
We propose a novel graph neural network (GNN) method for the network node deployment problem.
We show that an expressive GNN has the capacity to approximate both the function value and the traffic permutation, as a theoretic support for the proposed method.
arXiv Detail & Related papers (2022-08-19T08:06:28Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - Graph Neural Networks for Scalable Radio Resource Management:
Architecture Design and Theoretical Analysis [31.372548374969387]
We propose to apply graph neural networks (GNNs) to solve large-scale radio resource management problems.
The proposed method is highly scalable and can solve the beamforming problem in an interference channel with $1000$ transceiver pairs within $6$ milliseconds on a single GPU.
arXiv Detail & Related papers (2020-07-15T11:43:32Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Resource Allocation via Graph Neural Networks in Free Space Optical
Fronthaul Networks [119.81868223344173]
This paper investigates the optimal resource allocation in free space optical (FSO) fronthaul networks.
We consider the graph neural network (GNN) for the policy parameterization to exploit the FSO network structure.
The primal-dual learning algorithm is developed to train the GNN in a model-free manner, where the knowledge of system models is not required.
arXiv Detail & Related papers (2020-06-26T14:20:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.