Automating the Enterprise with Foundation Models
- URL: http://arxiv.org/abs/2405.03710v1
- Date: Fri, 3 May 2024 23:25:15 GMT
- Title: Automating the Enterprise with Foundation Models
- Authors: Michael Wornow, Avanika Narayan, Krista Opsahl-Ong, Quinn McIntyre, Nigam H. Shah, Christopher Re,
- Abstract summary: ECLAIR is a system to automate enterprise with minimal human supervision.
We identify human-AI collaboration, validation, and self-improvement as open challenges.
- Score: 15.708380634503467
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automating enterprise workflows could unlock $4 trillion/year in productivity gains. Despite being of interest to the data management community for decades, the ultimate vision of end-to-end workflow automation has remained elusive. Current solutions rely on process mining and robotic process automation (RPA), in which a bot is hard-coded to follow a set of predefined rules for completing a workflow. Through case studies of a hospital and large B2B enterprise, we find that the adoption of RPA has been inhibited by high set-up costs (12-18 months), unreliable execution (60% initial accuracy), and burdensome maintenance (requiring multiple FTEs). Multimodal foundation models (FMs) such as GPT-4 offer a promising new approach for end-to-end workflow automation given their generalized reasoning and planning abilities. To study these capabilities we propose ECLAIR, a system to automate enterprise workflows with minimal human supervision. We conduct initial experiments showing that multimodal FMs can address the limitations of traditional RPA with (1) near-human-level understanding of workflows (93% accuracy on a workflow understanding task) and (2) instant set-up with minimal technical barrier (based solely on a natural language description of a workflow, ECLAIR achieves end-to-end completion rates of 40%). We identify human-AI collaboration, validation, and self-improvement as open challenges, and suggest ways they can be solved with data management techniques. Code is available at: https://github.com/HazyResearch/eclair-agents
Related papers
- AFlow: Automating Agentic Workflow Generation [36.61172223528231]
Large language models (LLMs) have demonstrated remarkable potential in solving complex tasks across diverse domains.
We introduce AFlow, an automated framework that efficiently explores this space using Monte Carlo Tree Search.
Empirical evaluations across six benchmark datasets demonstrate AFlow's efficacy, yielding a 5.7% average improvement over state-of-the-art baselines.
arXiv Detail & Related papers (2024-10-14T17:40:40Z) - Benchmarking Agentic Workflow Generation [80.74757493266057]
We introduce WorFBench, a unified workflow generation benchmark with multi-faceted scenarios and intricate graph workflow structures.
We also present WorFEval, a systemic evaluation protocol utilizing subsequence and subgraph matching algorithms.
We observe that the generated can enhance downstream tasks, enabling them to achieve superior performance with less time during inference.
arXiv Detail & Related papers (2024-10-10T12:41:19Z) - Agent Workflow Memory [71.81385627556398]
We introduce Agent Memory, a method for inducing commonly reused routines.
AWM substantially improves the baseline results by 24.6% and 51.1% relative success rate.
Online AWM robustly generalizes in cross-task, website, and domain evaluations.
arXiv Detail & Related papers (2024-09-11T17:21:00Z) - Spider2-V: How Far Are Multimodal Agents From Automating Data Science and Engineering Workflows? [73.81908518992161]
We introduce Spider2-V, the first multimodal agent benchmark focusing on professional data science and engineering.
Spider2-V features real-world tasks in authentic computer environments and incorporating 20 enterprise-level professional applications.
These tasks evaluate the ability of a multimodal agent to perform data-related tasks by writing code and managing the GUI in enterprise data software systems.
arXiv Detail & Related papers (2024-07-15T17:54:37Z) - WONDERBREAD: A Benchmark for Evaluating Multimodal Foundation Models on Business Process Management Tasks [11.701910903349201]
Existing ML benchmarks lack the depth and diversity of annotations needed for evaluating models on business process management (BPM) tasks.
Our benchmark shows that while state-of-the-art FMs can automatically generate documentation, they struggle to re-apply that knowledge towards finer-grained validation of workflow completion.
arXiv Detail & Related papers (2024-06-19T06:50:15Z) - The Foundations of Computational Management: A Systematic Approach to
Task Automation for the Integration of Artificial Intelligence into Existing
Workflows [55.2480439325792]
This article introduces Computational Management, a systematic approach to task automation.
The article offers three easy step-by-step procedures to begin the process of implementing AI within a workflow.
arXiv Detail & Related papers (2024-02-07T01:45:14Z) - ProAgent: From Robotic Process Automation to Agentic Process Automation [87.0555252338361]
Large Language Models (LLMs) have emerged human-like intelligence.
This paper introduces Agentic Process Automation (APA), a groundbreaking automation paradigm using LLM-based agents for advanced automation.
We then instantiate ProAgent, an agent designed to craft from human instructions and make intricate decisions by coordinating specialized agents.
arXiv Detail & Related papers (2023-11-02T14:32:16Z) - Reinforcement Learning with Foundation Priors: Let the Embodied Agent Efficiently Learn on Its Own [59.11934130045106]
We propose Reinforcement Learning with Foundation Priors (RLFP) to utilize guidance and feedback from policy, value, and success-reward foundation models.
Within this framework, we introduce the Foundation-guided Actor-Critic (FAC) algorithm, which enables embodied agents to explore more efficiently with automatic reward functions.
Our method achieves remarkable performances in various manipulation tasks on both real robots and in simulation.
arXiv Detail & Related papers (2023-10-04T07:56:42Z) - A Makespan and Energy-Aware Scheduling Algorithm for Workflows under
Reliability Constraint on a Multiprocessor Platform [11.427019313284]
We propose a workflow scheduling algorithm to minimize the makespan and energy for a given reliability constraint.
We show that our algorithms, MERT and EAFTS, outperform the state-of-art approaches.
arXiv Detail & Related papers (2022-12-19T07:03:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.