Spider2-V: How Far Are Multimodal Agents From Automating Data Science and Engineering Workflows?
- URL: http://arxiv.org/abs/2407.10956v1
- Date: Mon, 15 Jul 2024 17:54:37 GMT
- Title: Spider2-V: How Far Are Multimodal Agents From Automating Data Science and Engineering Workflows?
- Authors: Ruisheng Cao, Fangyu Lei, Haoyuan Wu, Jixuan Chen, Yeqiao Fu, Hongcheng Gao, Xinzhuang Xiong, Hanchong Zhang, Yuchen Mao, Wenjing Hu, Tianbao Xie, Hongshen Xu, Danyang Zhang, Sida Wang, Ruoxi Sun, Pengcheng Yin, Caiming Xiong, Ansong Ni, Qian Liu, Victor Zhong, Lu Chen, Kai Yu, Tao Yu,
- Abstract summary: We introduce Spider2-V, the first multimodal agent benchmark focusing on professional data science and engineering.
Spider2-V features real-world tasks in authentic computer environments and incorporating 20 enterprise-level professional applications.
These tasks evaluate the ability of a multimodal agent to perform data-related tasks by writing code and managing the GUI in enterprise data software systems.
- Score: 73.81908518992161
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data science and engineering workflows often span multiple stages, from warehousing to orchestration, using tools like BigQuery, dbt, and Airbyte. As vision language models (VLMs) advance in multimodal understanding and code generation, VLM-based agents could potentially automate these workflows by generating SQL queries, Python code, and GUI operations. This automation can improve the productivity of experts while democratizing access to large-scale data analysis. In this paper, we introduce Spider2-V, the first multimodal agent benchmark focusing on professional data science and engineering workflows, featuring 494 real-world tasks in authentic computer environments and incorporating 20 enterprise-level professional applications. These tasks, derived from real-world use cases, evaluate the ability of a multimodal agent to perform data-related tasks by writing code and managing the GUI in enterprise data software systems. To balance realistic simulation with evaluation simplicity, we devote significant effort to developing automatic configurations for task setup and carefully crafting evaluation metrics for each task. Furthermore, we supplement multimodal agents with comprehensive documents of these enterprise data software systems. Our empirical evaluation reveals that existing state-of-the-art LLM/VLM-based agents do not reliably automate full data workflows (14.0% success). Even with step-by-step guidance, these agents still underperform in tasks that require fine-grained, knowledge-intensive GUI actions (16.2%) and involve remote cloud-hosted workspaces (10.6%). We hope that Spider2-V paves the way for autonomous multimodal agents to transform the automation of data science and engineering workflow. Our code and data are available at https://spider2-v.github.io.
Related papers
- WorkflowLLM: Enhancing Workflow Orchestration Capability of Large Language Models [105.46456444315693]
We presentLLM, a data-centric framework to enhance the capability of large language models in workflow orchestration.
It first constructs a large-scale fine-tuningBench with 106,763 samples, covering 1,503 APIs from 83 applications across 28 categories.
LlamaLlama demonstrates a strong capacity to orchestrate complex APIs, while also achieving notable generalization performance.
arXiv Detail & Related papers (2024-11-08T09:58:02Z) - AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML [56.565200973244146]
Automated machine learning (AutoML) accelerates AI development by automating tasks in the development pipeline.
Recent works have started exploiting large language models (LLM) to lessen such burden.
This paper proposes AutoML-Agent, a novel multi-agent framework tailored for full-pipeline AutoML.
arXiv Detail & Related papers (2024-10-03T20:01:09Z) - WONDERBREAD: A Benchmark for Evaluating Multimodal Foundation Models on Business Process Management Tasks [11.701910903349201]
Existing ML benchmarks lack the depth and diversity of annotations needed for evaluating models on business process management (BPM) tasks.
Our benchmark shows that while state-of-the-art FMs can automatically generate documentation, they struggle to re-apply that knowledge towards finer-grained validation of workflow completion.
arXiv Detail & Related papers (2024-06-19T06:50:15Z) - CAAP: Context-Aware Action Planning Prompting to Solve Computer Tasks with Front-End UI Only [21.054681757006385]
We propose an agent that perceives its environment solely through screenshot images.
By leveraging the reasoning capability of the Large Language Models, we eliminate the need for large-scale human demonstration data.
Agent achieves an average success rate of 94.5% on MiniWoB++ and an average task score of 62.3 on WebShop.
arXiv Detail & Related papers (2024-06-11T05:21:20Z) - Accelerated Cloud for Artificial Intelligence (ACAI) [24.40451195277244]
We propose an end-to-end cloud-based machine learning platform, Accelerated Cloud for AI (ACAI)
ACAI enables cloud-based storage of indexed, labeled, and searchable data, as well as automatic resource provisioning, job scheduling, and experiment tracking.
We show that our auto-provisioner produces a 1.7x speed-up and 39% cost reduction, and our system reduces experiment time for ML scientists by 20% on typical ML use cases.
arXiv Detail & Related papers (2024-01-30T07:09:48Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
We introduce TaskBench, a framework to evaluate the capability of large language models (LLMs) in task automation.
Specifically, task decomposition, tool selection, and parameter prediction are assessed.
Our approach combines automated construction with rigorous human verification, ensuring high consistency with human evaluation.
arXiv Detail & Related papers (2023-11-30T18:02:44Z) - GenSim: Generating Robotic Simulation Tasks via Large Language Models [34.79613485106202]
GenSim aims to automatically generate rich simulation environments and expert demonstrations.
We use GPT4 to expand the existing benchmark by ten times to over 100 tasks.
With minimal sim-to-real adaptation, multitask policies pretrained on GPT4-generated simulation tasks exhibit stronger transfer to unseen long-horizon tasks in the real world.
arXiv Detail & Related papers (2023-10-02T17:23:48Z) - Towards Lightweight Data Integration using Multi-workflow Provenance and
Data Observability [0.2517763905487249]
Integrated data analysis plays a crucial role in scientific discovery, especially in the current AI era.
We propose MIDA: an approach for lightweight runtime Multi-workflow Integrated Data Analysis.
We show near-zero overhead running up to 100,000 tasks on 1,680 CPU cores on the Summit supercomputer.
arXiv Detail & Related papers (2023-08-17T14:20:29Z) - Data-Copilot: Bridging Billions of Data and Humans with Autonomous Workflow [49.724842920942024]
Industries such as finance, meteorology, and energy generate vast amounts of data daily.
We propose Data-Copilot, a data analysis agent that autonomously performs querying, processing, and visualization of massive data tailored to diverse human requests.
arXiv Detail & Related papers (2023-06-12T16:12:56Z) - OmniForce: On Human-Centered, Large Model Empowered and Cloud-Edge
Collaborative AutoML System [85.8338446357469]
We introduce OmniForce, a human-centered AutoML system that yields both human-assisted ML and ML-assisted human techniques.
We show how OmniForce can put an AutoML system into practice and build adaptive AI in open-environment scenarios.
arXiv Detail & Related papers (2023-03-01T13:35:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.