Deep Oscillatory Neural Network
- URL: http://arxiv.org/abs/2405.03725v2
- Date: Mon, 9 Sep 2024 08:33:40 GMT
- Title: Deep Oscillatory Neural Network
- Authors: Nurani Rajagopal Rohan, Vigneswaran C, Sayan Ghosh, Kishore Rajendran, Gaurav A, V Srinivasa Chakravarthy,
- Abstract summary: We propose a brain-inspired deep neural network model known as the Deepy Neural Network (DONN)
With this motivation, the DONN is designed to have oscillatory internal dynamics.
The performance of the proposed models is either comparable or superior to published results on the same data sets.
- Score: 4.2586023009901215
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel, brain-inspired deep neural network model known as the Deep Oscillatory Neural Network (DONN). Deep neural networks like the Recurrent Neural Networks indeed possess sequence processing capabilities but the internal states of the network are not designed to exhibit brain-like oscillatory activity. With this motivation, the DONN is designed to have oscillatory internal dynamics. Neurons of the DONN are either nonlinear neural oscillators or traditional neurons with sigmoidal or ReLU activation. The neural oscillator used in the model is the Hopf oscillator, with the dynamics described in the complex domain. Input can be presented to the neural oscillator in three possible modes. The sigmoid and ReLU neurons also use complex-valued extensions. All the weight stages are also complex-valued. Training follows the general principle of weight change by minimizing the output error and therefore has an overall resemblance to complex backpropagation. A generalization of DONN to convolutional networks known as the Oscillatory Convolutional Neural Network is also proposed. The two proposed oscillatory networks are applied to a variety of benchmark problems in signal and image/video processing. The performance of the proposed models is either comparable or superior to published results on the same data sets.
Related papers
- Tuning the Frequencies: Robust Training for Sinusoidal Neural Networks [1.5124439914522694]
We introduce a theoretical framework that explains the capacity property of sinusoidal networks.
We show how its layer compositions produce a large number of new frequencies expressed as integer combinations of the input frequencies.
Our method, referred to as TUNER, greatly improves the stability and convergence of sinusoidal INR training, leading to detailed reconstructions.
arXiv Detail & Related papers (2024-07-30T18:24:46Z) - Novel Kernel Models and Exact Representor Theory for Neural Networks Beyond the Over-Parameterized Regime [52.00917519626559]
This paper presents two models of neural-networks and their training applicable to neural networks of arbitrary width, depth and topology.
We also present an exact novel representor theory for layer-wise neural network training with unregularized gradient descent in terms of a local-extrinsic neural kernel (LeNK)
This representor theory gives insight into the role of higher-order statistics in neural network training and the effect of kernel evolution in neural-network kernel models.
arXiv Detail & Related papers (2024-05-24T06:30:36Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Complex Dynamic Neurons Improved Spiking Transformer Network for
Efficient Automatic Speech Recognition [8.998797644039064]
The spiking neural network (SNN) using leaky-integrated-and-fire (LIF) neurons has been commonly used in automatic speech recognition (ASR) tasks.
Here we introduce four types of neuronal dynamics to post-process the sequential patterns generated from the spiking transformer.
We found that the DyTr-SNN could handle the non-toy automatic speech recognition task well, representing a lower phoneme error rate, lower computational cost, and higher robustness.
arXiv Detail & Related papers (2023-02-02T16:20:27Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a
Polynomial Net Study [55.12108376616355]
The study on NTK has been devoted to typical neural network architectures, but is incomplete for neural networks with Hadamard products (NNs-Hp)
In this work, we derive the finite-width-K formulation for a special class of NNs-Hp, i.e., neural networks.
We prove their equivalence to the kernel regression predictor with the associated NTK, which expands the application scope of NTK.
arXiv Detail & Related papers (2022-09-16T06:36:06Z) - Why Quantization Improves Generalization: NTK of Binary Weight Neural
Networks [33.08636537654596]
We take the binary weights in a neural network as random variables under rounding, and study the distribution propagation over different layers in the neural network.
We propose a quasi neural network to approximate the distribution propagation, which is a neural network with continuous parameters and smooth activation function.
arXiv Detail & Related papers (2022-06-13T06:11:21Z) - Stochastic resonance neurons in artificial neural networks [0.0]
We propose a new type of neural networks using resonances as an inherent part of the architecture.
We show that such a neural network is more robust against the impact of noise.
arXiv Detail & Related papers (2022-05-06T18:42:36Z) - Deep Kronecker neural networks: A general framework for neural networks
with adaptive activation functions [4.932130498861987]
We propose a new type of neural networks, Kronecker neural networks (KNNs), that form a general framework for neural networks with adaptive activation functions.
Under suitable conditions, KNNs induce a faster decay of the loss than that by the feed-forward networks.
arXiv Detail & Related papers (2021-05-20T04:54:57Z) - Deep Neural Networks using a Single Neuron: Folded-in-Time Architecture
using Feedback-Modulated Delay Loops [0.0]
We present a method for folding a deep neural network of arbitrary size into a single neuron with multiple time-delayed feedback loops.
This single-neuron deep neural network comprises only a single nonlinearity and appropriately adjusted modulations of the feedback signals.
The new method, which we call Folded-in-time DNN (Fit-DNN), exhibits promising performance in a set of benchmark tasks.
arXiv Detail & Related papers (2020-11-19T21:45:58Z) - Exploiting Heterogeneity in Operational Neural Networks by Synaptic
Plasticity [87.32169414230822]
Recently proposed network model, Operational Neural Networks (ONNs), can generalize the conventional Convolutional Neural Networks (CNNs)
In this study the focus is drawn on searching the best-possible operator set(s) for the hidden neurons of the network based on the Synaptic Plasticity paradigm that poses the essential learning theory in biological neurons.
Experimental results over highly challenging problems demonstrate that the elite ONNs even with few neurons and layers can achieve a superior learning performance than GIS-based ONNs.
arXiv Detail & Related papers (2020-08-21T19:03:23Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
We introduce a novel training strategy that allows learning not only the input-output behavior of an RNN but also its internal network dynamics.
We test the proposed method by training an RNN to simultaneously reproduce internal dynamics and output signals of a physiologically-inspired neural model.
Remarkably, we show that the reproduction of the internal dynamics is successful even when the training algorithm relies on the activities of a small subset of neurons.
arXiv Detail & Related papers (2020-05-05T14:16:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.