Select to Perfect: Imitating desired behavior from large multi-agent data
- URL: http://arxiv.org/abs/2405.03735v1
- Date: Mon, 6 May 2024 15:48:24 GMT
- Title: Select to Perfect: Imitating desired behavior from large multi-agent data
- Authors: Tim Franzmeyer, Edith Elkind, Philip Torr, Jakob Foerster, Joao Henriques,
- Abstract summary: Desired characteristics for AI agents can be expressed by assigning desirability scores.
We first assess the effect of each individual agent's behavior on the collective desirability score.
We propose the concept of an agent's Exchange Value, which quantifies an individual agent's contribution to the collective desirability score.
- Score: 28.145889065013687
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: AI agents are commonly trained with large datasets of demonstrations of human behavior. However, not all behaviors are equally safe or desirable. Desired characteristics for an AI agent can be expressed by assigning desirability scores, which we assume are not assigned to individual behaviors but to collective trajectories. For example, in a dataset of vehicle interactions, these scores might relate to the number of incidents that occurred. We first assess the effect of each individual agent's behavior on the collective desirability score, e.g., assessing how likely an agent is to cause incidents. This allows us to selectively imitate agents with a positive effect, e.g., only imitating agents that are unlikely to cause incidents. To enable this, we propose the concept of an agent's Exchange Value, which quantifies an individual agent's contribution to the collective desirability score. The Exchange Value is the expected change in desirability score when substituting the agent for a randomly selected agent. We propose additional methods for estimating Exchange Values from real-world datasets, enabling us to learn desired imitation policies that outperform relevant baselines. The project website can be found at https://tinyurl.com/select-to-perfect.
Related papers
- Learning responsibility allocations for multi-agent interactions: A differentiable optimization approach with control barrier functions [12.074590482085831]
We seek to codify factors governing safe multi-agent interactions via the lens of responsibility.
We propose a data-driven modeling approach based on control barrier functions and differentiable optimization.
arXiv Detail & Related papers (2024-10-09T20:20:41Z) - A decision-theoretic model for a principal-agent collaborative learning problem [0.0]
We consider a collaborative learning framework with principal-agent setting in which the principal determines a set of appropriate aggregation coefficients.
The proposed framework offers some advantages in terms of stability and generalization, despite that both the principal and the agents do not necessarily need to have any knowledge of the sample distributions or the quality of each others' datasets.
arXiv Detail & Related papers (2024-09-24T13:08:51Z) - Causal Influence in Federated Edge Inference [34.487472866247586]
In this paper, we consider a setting where heterogeneous agents with connectivity are performing inference using unlabeled streaming data.
In order to overcome the uncertainty, agents cooperate with each other by exchanging their local inferences with and through a fusion center.
Various scenarios reflecting different agent participation patterns and fusion center policies are investigated.
arXiv Detail & Related papers (2024-05-02T13:06:50Z) - Malicious Agent Detection for Robust Multi-Agent Collaborative Perception [52.261231738242266]
Multi-agent collaborative (MAC) perception is more vulnerable to adversarial attacks than single-agent perception.
We propose Malicious Agent Detection (MADE), a reactive defense specific to MAC perception.
We conduct comprehensive evaluations on a benchmark 3D dataset V2X-sim and a real-road dataset DAIR-V2X.
arXiv Detail & Related papers (2023-10-18T11:36:42Z) - AgentCF: Collaborative Learning with Autonomous Language Agents for
Recommender Systems [112.76941157194544]
We propose AgentCF for simulating user-item interactions in recommender systems through agent-based collaborative filtering.
We creatively consider not only users but also items as agents, and develop a collaborative learning approach that optimize both kinds of agents together.
Overall, the optimized agents exhibit diverse interaction behaviors within our framework, including user-item, user-user, item-item, and collective interactions.
arXiv Detail & Related papers (2023-10-13T16:37:14Z) - AlignDiff: Aligning Diverse Human Preferences via Behavior-Customisable
Diffusion Model [69.12623428463573]
AlignDiff is a novel framework to quantify human preferences, covering abstractness, and guide diffusion planning.
It can accurately match user-customized behaviors and efficiently switch from one to another.
We demonstrate its superior performance on preference matching, switching, and covering compared to other baselines.
arXiv Detail & Related papers (2023-10-03T13:53:08Z) - Pure Exploration under Mediators' Feedback [63.56002444692792]
Multi-armed bandits are a sequential-decision-making framework, where, at each interaction step, the learner selects an arm and observes a reward.
We consider the scenario in which the learner has access to a set of mediators, each of which selects the arms on the agent's behalf according to a and possibly unknown policy.
We propose a sequential decision-making strategy for discovering the best arm under the assumption that the mediators' policies are known to the learner.
arXiv Detail & Related papers (2023-08-29T18:18:21Z) - Emergent Behaviors in Multi-Agent Target Acquisition [0.0]
We simulate a Multi-Agent System (MAS) using Reinforcement Learning (RL) in a pursuit-evasion game.
We create different adversarial scenarios by replacing RL-trained pursuers' policies with two distinct (non-RL) analytical strategies.
The novelty of our approach entails the creation of an influential feature set that reveals underlying data regularities.
arXiv Detail & Related papers (2022-12-15T15:20:58Z) - Differential Assessment of Black-Box AI Agents [29.98710357871698]
We propose a novel approach to differentially assess black-box AI agents that have drifted from their previously known models.
We leverage sparse observations of the drifted agent's current behavior and knowledge of its initial model to generate an active querying policy.
Empirical evaluation shows that our approach is much more efficient than re-learning the agent model from scratch.
arXiv Detail & Related papers (2022-03-24T17:48:58Z) - Explaining Reinforcement Learning Policies through Counterfactual
Trajectories [147.7246109100945]
A human developer must validate that an RL agent will perform well at test-time.
Our method conveys how the agent performs under distribution shifts by showing the agent's behavior across a wider trajectory distribution.
In a user study, we demonstrate that our method enables users to score better than baseline methods on one of two agent validation tasks.
arXiv Detail & Related papers (2022-01-29T00:52:37Z) - Randomized Entity-wise Factorization for Multi-Agent Reinforcement
Learning [59.62721526353915]
Multi-agent settings in the real world often involve tasks with varying types and quantities of agents and non-agent entities.
Our method aims to leverage these commonalities by asking the question: What is the expected utility of each agent when only considering a randomly selected sub-group of its observed entities?''
arXiv Detail & Related papers (2020-06-07T18:28:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.