Sharp Results for Hypothesis Testing with Risk-Sensitive Agents
- URL: http://arxiv.org/abs/2412.16452v1
- Date: Sat, 21 Dec 2024 02:51:56 GMT
- Title: Sharp Results for Hypothesis Testing with Risk-Sensitive Agents
- Authors: Flora C. Shi, Stephen Bates, Martin J. Wainwright,
- Abstract summary: We study a game-theoretic version of hypothesis testing in which a statistician, also known as a principal, interacts with strategic agents that can generate data.
The statistician seeks to design a testing protocol with controlled error, while the data-generating agents, guided by their utility and prior information, choose whether or not to opt in.
- Score: 32.38246810091696
- License:
- Abstract: Statistical protocols are often used for decision-making involving multiple parties, each with their own incentives, private information, and ability to influence the distributional properties of the data. We study a game-theoretic version of hypothesis testing in which a statistician, also known as a principal, interacts with strategic agents that can generate data. The statistician seeks to design a testing protocol with controlled error, while the data-generating agents, guided by their utility and prior information, choose whether or not to opt in based on expected utility maximization. This strategic behavior affects the data observed by the statistician and, consequently, the associated testing error. We analyze this problem for general concave and monotonic utility functions and prove an upper bound on the Bayes false discovery rate (FDR). Underlying this bound is a form of prior elicitation: we show how an agent's choice to opt in implies a certain upper bound on their prior null probability. Our FDR bound is unimprovable in a strong sense, achieving equality at a single point for an individual agent and at any countable number of points for a population of agents. We also demonstrate that our testing protocols exhibit a desirable maximin property when the principal's utility is considered. To illustrate the qualitative predictions of our theory, we examine the effects of risk aversion, reward stochasticity, and signal-to-noise ratio, as well as the implications for the Food and Drug Administration's testing protocols.
Related papers
- Winners with Confidence: Discrete Argmin Inference with an Application to Model Selection [11.62889979871371]
We study the problem of finding the index of the minimum value of a vector noisy observations.
This problem is relevant in population/policy comparison, discrete maximum likelihood, and model selection.
We develop anally normal test statistic, even in high-dimensional settings.
arXiv Detail & Related papers (2024-08-04T15:20:23Z) - Federated Causal Discovery from Heterogeneous Data [70.31070224690399]
We propose a novel FCD method attempting to accommodate arbitrary causal models and heterogeneous data.
These approaches involve constructing summary statistics as a proxy of the raw data to protect data privacy.
We conduct extensive experiments on synthetic and real datasets to show the efficacy of our method.
arXiv Detail & Related papers (2024-02-20T18:53:53Z) - Incentive-Theoretic Bayesian Inference for Collaborative Science [59.15962177829337]
We study hypothesis testing when there is an agent with a private prior about an unknown parameter.
We show how the principal can conduct statistical inference that leverages the information that is revealed by an agent's strategic behavior.
arXiv Detail & Related papers (2023-07-07T17:59:01Z) - Statistical Inference Under Constrained Selection Bias [20.862583584531322]
We propose a framework that enables statistical inference in the presence of selection bias.
The output is high-probability bounds on the value of an estimand for the target distribution.
We analyze the computational and statistical properties of methods to estimate these bounds and show that our method can produce informative bounds on a variety of simulated and semisynthetic tasks.
arXiv Detail & Related papers (2023-06-05T23:05:26Z) - Bounding Counterfactuals under Selection Bias [60.55840896782637]
We propose a first algorithm to address both identifiable and unidentifiable queries.
We prove that, in spite of the missingness induced by the selection bias, the likelihood of the available data is unimodal.
arXiv Detail & Related papers (2022-07-26T10:33:10Z) - Private Sequential Hypothesis Testing for Statisticians: Privacy, Error
Rates, and Sample Size [24.149533870085175]
We study the sequential hypothesis testing problem under a slight variant of differential privacy, known as Renyi differential privacy.
We present a new private algorithm based on Wald's Sequential Probability Ratio Test (SPRT) that also gives strong theoretical privacy guarantees.
arXiv Detail & Related papers (2022-04-10T04:15:50Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Plinko: A Theory-Free Behavioral Measure of Priors for Statistical
Learning and Mental Model Updating [62.997667081978825]
We present three experiments using "Plinko", a behavioral task in which participants estimate distributions of ball drops over all available outcomes.
We show that participant priors cluster around prototypical probability distributions and that prior cluster membership may indicate learning ability.
We verify that individual participant priors are reliable representations and that learning is not impeded when faced with a physically implausible ball drop distribution.
arXiv Detail & Related papers (2021-07-23T22:27:30Z) - Foreseeing the Benefits of Incidental Supervision [83.08441990812636]
This paper studies whether we can, in a single framework, quantify the benefits of various types of incidental signals for a given target task without going through experiments.
We propose a unified PAC-Bayesian motivated informativeness measure, PABI, that characterizes the uncertainty reduction provided by incidental supervision signals.
arXiv Detail & Related papers (2020-06-09T20:59:42Z) - A Causal Direction Test for Heterogeneous Populations [10.653162005300608]
Most causal models assume a single homogeneous population, an assumption that may fail to hold in many applications.
We show that when the homogeneity assumption is violated, causal models developed based on such assumption can fail to identify the correct causal direction.
We propose an adjustment to a commonly used causal direction test statistic by using a $k$-means type clustering algorithm.
arXiv Detail & Related papers (2020-06-08T18:59:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.